IV P

$$
\left.\begin{array}{l}
\square u=0 \\
u(0, x)=\phi \\
\frac{1}{c} u_{t}(0, x)=\psi \\
\\
\\
\\
\end{array}\right] \begin{array}{r}
\text { araloges to } \\
\ddot{x}=f(t, x, \dot{x}) \\
\\
\\
\\
\\
\\
\\
\dot{x}(0)=x_{0}
\end{array}
$$

If there is a solution it has the form

$$
\begin{aligned}
& f(x-c t)+g(x+c t) \\
& -f(x)+g(x)=\phi(x) \\
& -f^{\prime}(x)+g^{\prime}(x)=\psi(x) \\
& f^{\prime}+g^{\prime}=\phi^{\prime} \\
& g^{\prime}=\phi^{\prime}+\psi \\
& f^{\prime}=\phi^{\prime}-\psi \\
& g(x)=\left[\phi(x)+k_{1}+\int_{0}^{x} \psi(s) d s\right] \frac{1}{2} \\
& f(x)=\left[\phi(x)+k_{2}-\int_{0}^{x} \psi(s) d s\right] l^{\prime} / 2
\end{aligned}
$$

$$
\begin{gathered}
f(x)+g(x)=\phi(x)+\underbrace{k_{1}+k_{2}}_{\rightarrow=0} \\
k_{2}=-k_{1} \\
f(x-c t)+g(x+e t)=\frac{1}{2}[\phi(x-c t)+\phi(x+c t)] \\
+\frac{1}{2} \int_{x-c t}^{x+c t} \psi(s) d s
\end{gathered}
$$

Initial profile splits, $\frac{1}{2} \rightarrow$ ungt, $\frac{1}{2} \rightarrow$ left.
Anti deinalive of 4 splits $\frac{1}{2} \rightarrow(+), \frac{1}{2} \rightarrow$ left $(-)$

In padiculuy if ϕ, ψ are 0 between $(\hat{x}-\hat{t}, \hat{x}+c \hat{t})$ at $t=0$ then $u(\hat{x}, \hat{t})=0$.

Logic: If a solution exists, then it's he sum ot a left and a nought gong wave.

We the used this ar zutz to fond the only possible sum of a left al risk sous were tat solves.
(Thee exists a solution to the IUP all it is unique)

More over, we find the principle of causality:
If $\phi, \psi=0$ an $\left(x_{0}-c t_{0}, x_{0}+c t_{0}\right)$ at $t=0$
Then $u\left(t e, x_{0}\right)=0$, ind indeed tharkat

In three dimensions there is mone strectre.

$$
\begin{aligned}
& \begin{array}{l}
\xi \in \mathbb{R}^{3} \quad f(\xi \cdot x-c t)=u(y, t) \\
|\xi|=1 \quad \frac{1}{c^{2}} u_{t t}-\Delta u
\end{array}=f^{\prime \prime}(\xi \cdot x-c t)-f^{\prime \prime}(\xi \cdot x-c t)|\xi|^{2} \\
& \\
& =0
\end{aligned}
$$

e.,. $\xi=(1,0,0)$ plare ware turellis risht is speed a.

In gaverl this is a plime ware in the \sum linection with speed C.

Among these are the mowchimatic waves
$e^{(i \underset{c}{\omega}(c t-x \cdot \xi))}$ which have a veal nuagonemy purt that each sutish he wine equation.
$\cos \left(\frac{\omega}{c} \times \quad\right.$ ware legth $\frac{2 \pi c}{\omega}=L$
frequncy $\frac{C}{L}=\frac{D}{2 \pi}=\frac{\text { aycles }}{\text { tme }}$
ω : argale frea, $\frac{\mathrm{ml}}{\mathrm{sec}}$

But also, any livern combination of these is agm a solution of the whe equation. It's a sum of plar waons being trasputed it vonners dinections at speed c.
"Eresy"lusity of a solution

$$
\begin{aligned}
& \frac{1}{2}\left(\frac{1}{c} u_{t}^{2}+|\nabla u|^{2}\right) \\
& \frac{d}{d t} \int \frac{1}{2}\left(\int_{c^{2}} u_{t}^{2}+|\nabla u|^{2}\right) d x \\
& =\int \frac{1}{c^{2}} u_{t} u_{t t}+\nabla u \cdot \nabla u_{t} d x \\
& = \\
& =\iint_{c^{2}} u_{t} u_{t t}-u_{t} \Delta u d x \\
& \\
& =\int u_{t}\left[u_{t t}-\Delta u\right] d x=0
\end{aligned}
$$

In fact, the soletur hus an associated erersy-noventum.

$$
P=\left[\begin{array}{c}
\frac{1}{2}\left(\underset{c}{\left(u_{2}^{2}+\right.}\right. \\
-\frac{1}{c} u_{t} \nabla u
\end{array}\right]
$$

$$
\begin{aligned}
D_{i v} P & =\frac{1}{c^{3}} u_{t} u_{t t}+\frac{1}{c} \nabla u_{t} \cdot \nabla u-\frac{1}{c} \nabla_{u_{t}} \cdot \nabla u-\frac{1}{c} u_{t} d_{a} \\
& =\frac{1}{c} u_{t}\left[\frac{1}{c^{2}} u_{t t}-\Delta u\right]=0
\end{aligned}
$$

This is a locally conserved quantity.

It is causal, future pointy by (andy-Sauntz.

A 2-d computation

$$
P=\left[\frac{1}{2}\left(\frac{1}{2} \partial^{2} \alpha^{2}-\left(\alpha_{44}\right)^{2}\right]\right.
$$

(Euclidian!)

$$
\begin{gathered}
0=-\int_{A} \frac{1}{2}\left[\frac{1}{c^{2}}\left(\partial_{t} u\right)^{2}+\left(\partial_{x} u\right)^{2}\right]+\int_{B} \frac{1}{2}[-] \\
=\int_{C} \nu^{*} \cdot P+\int_{D} \nu^{*} \cdot P
\end{gathered}
$$

On D $\nu^{*}=\frac{1}{\sqrt{2}}[1,1]$

$$
\nu^{*}-P=g(\nu, \rho) \quad \nu=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

$$
\begin{aligned}
O_{n} C \nu^{*} & =\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
\nu & =\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

$g(P, \nu) \geqslant 0$ as P is the like, f.p

$$
\nu \text { is f.p, aull }
$$

$$
\begin{aligned}
\int_{B} \frac{1}{2}[-] & =\int_{A} \frac{1}{2}[-]-\int_{C O D} g(P, \nu) d A \\
& \leqslant \int_{A} \frac{1}{2}[-]
\end{aligned}
$$

(with equalty off Pis paculld to v)

Highen divens:

$$
\int_{B} \frac{1}{2}[-]=\int_{A} \frac{1}{2}[-]-\underbrace{\int_{C} g(\nu, p)}_{C}
$$

If $\partial_{t} u, \nabla_{u}=0$ on A then also on B

Exenuse: 4.3 constrat or whole frustum.

