We will start representry observes in spacetime by tinelike vectors of length f. 1

$$
\underset{\sim}{p} \underbrace{\sim} \underset{\sim}{u}
$$

What is the energy measured by U ?

In a frame where $U=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ it is $c P^{0}=c g(P, U)$.
In mother frame $c g(f, 0)=c g(\hat{\rho}, \hat{v})$.
So energy is $g(\underset{\sim}{\sim}, \underset{\sim}{\sim})$.

$$
c_{m} \gamma(v)\left[\begin{array}{l}
c \\
v
\end{array}\right]
$$

$$
\begin{aligned}
& c P^{0}=c^{2} m \gamma(v) \\
& c\left[\begin{array}{c}
p^{1} \\
p^{2} \\
p^{3}
\end{array}\right]=\frac{L^{c} m \gamma(v) v}{\square}=c^{2} m \gamma(v) \frac{v}{c}
\end{aligned}
$$

Taking measoremats by dot products is common. Here's another:

Chum has width $\frac{1}{\gamma} \Delta x$
and new density $\gamma \frac{\Sigma}{\Delta x}$

Tee. New density $=\gamma \sigma_{0}$

Let me make a vector in the rest fire $\left[\begin{array}{c}\sigma_{0} \\ 0\end{array}\right]$
In a froe traveling in which the particles are tacky with veloce v, $\gamma(v)=c$

$$
\left[\begin{array}{ll}
C & S \\
S & C
\end{array}\right]\left[\begin{array}{l}
\sigma_{0} \\
0
\end{array}\right]=\left[\begin{array}{ll}
C & \sigma_{0} \\
S & \sigma_{0}
\end{array}\right]
$$

In the time position we have the obsenid density.

A couple of ways to that about this:

$$
\frac{\sigma_{0}}{c} c\left[\begin{array}{l}
c \\
s
\end{array}\right] \quad \frac{\sigma_{0}}{c} \quad c\left[\begin{array}{c}
c \\
c s / c
\end{array}\right]=\frac{\sigma_{0}}{c} \gamma\left[\begin{array}{l}
c \\
v
\end{array}\right]
$$

$\rightarrow 4$-velocity of the particles.

Let's maltipy by c

$$
\sum_{\text {res density }}^{\sigma_{0}} \frac{c\left[\begin{array}{l}
c \\
s
\end{array}\right]}{4 \text {-velocity }}
$$

components:

$$
\begin{aligned}
c \sigma_{0} C \rightarrow \underset{\substack{c \\
\text { dead } \\
\text { dead }}}{c \sigma_{0} S}= & =\sigma_{0} C\left(\frac{s}{C}\right) \\
& =\cos C \frac{v}{C} \\
& =\sigma_{0} C V
\end{aligned}
$$

So this is a density-flux vectors N.

If I am obsever with 4 -velocity V
then in my rest frume

$$
\begin{aligned}
g(V, N) & =[1,0] G\left[\begin{array}{c}
c_{\sigma} \\
\sigma v
\end{array}\right] \\
& =c \sigma
\end{aligned}
$$

Bat this is twe in ay frome

$$
g(\underset{\sim}{V}, \underset{\sim}{N})=c \sigma
$$

Upshat: A distribution of flurd praticles is describel by a vector at each location. The lash of the vactotualtye eacoles corest density.

The dirction of the vecto ecotes he (spretre) 4 -velocity $;$ divide by rest densiry to sot the 4 -cel of the flurd.

Consider a function on spacetime
$f(t, x)$ in your coordinates.
Give a cure $\alpha(\tau)$ how does the particle see f chance.
(Think of f, es., as temperature)

$$
\begin{aligned}
\frac{d}{l \tau} f(\alpha(\tau))= & \frac{\partial f}{\partial x^{0}} \frac{d \alpha^{0}}{d \tau}+\frac{\partial f}{\partial x^{1}} \frac{d^{\prime}}{d \tau}+\cdots+\frac{\partial f}{\partial x^{3}} \frac{\partial \alpha^{3}}{d \tau} \\
= & {\left[\frac{\partial f}{\partial x^{0}}, \ldots, \frac{\partial f}{\partial x^{3}}\right]\left[\begin{array}{c}
\alpha^{0} \\
\vdots \\
\alpha^{3}
\end{array}\right]^{\prime} } \\
& x^{0}=c t
\end{aligned}
$$

The four number $\left[\frac{\partial f}{\partial x^{0}}, \ldots, \frac{\partial f}{\partial x^{3}}\right]$ look like they mishit be the componats of a vector. But they are not.

What lupus if we charge coordinates?

$$
\begin{gathered}
\hat{f}(\hat{x})=f(x(\hat{x})) \\
\hat{f}(\hat{x}(x))=f(x) \\
\hat{\alpha}=L \alpha \\
\hat{f}(L \alpha)=f(\alpha) \\
{\left[\frac{\partial \hat{f}}{\partial \hat{x}^{0}}, \ldots, \frac{\partial \hat{f}}{\partial \hat{x}^{3}}\right] L \alpha^{\prime}=\left[\frac{\partial f}{\partial x^{0}}, \ldots, \frac{\partial f}{\partial x^{3}}\right] \alpha^{\prime}}
\end{gathered}
$$

This is time for all twelike α^{\prime} and, as we will see, this imp es

$$
\left[\frac{\partial \hat{f}}{\partial \hat{x}^{0}}, \ldots, \frac{\partial \hat{f}}{\partial \hat{x}^{3}}\right] L=\left[\frac{\partial f}{\partial x^{0}}, \ldots, \frac{\partial f}{\partial x^{3}}\right]
$$

Cangue $\quad \hat{\alpha}^{\prime}=L \alpha^{\prime}$

The L is on the wrong side of the equation, ad on the wrens side of the "vector"!

The object in question is a convector instead.
Represulis vector:

colum $\hat{V}=L V$ is the rale for conversion.

Represents convectors

Given a function $\underset{\sim}{f}$ or spacetare, il detemaes a coucctor of even point $d f$. What ae its conpanats?

Rep $\underset{\sim}{f}$ in $\uparrow^{\text {coordinates as } f}$
goonetre

$$
d f=\left[\frac{\partial f}{\partial x^{0}},-, \frac{\partial f}{\partial x^{3}}\right]
$$

So what is a covector?
Let V be a vector spare.
It's dual space \mathbb{V}^{*} is the set of I new maps from
\mathbb{V} to \mathbb{R}. E.g. suppose V is 4 -dimensional
with basis e_{0}, \ldots, e_{4}.
So oms $V \in \mathbb{V}$ can be written $V=V^{0} e_{0}+V^{1} e_{1} t+V^{3} e_{3}$.

Noil let $x \in \mathbb{V}^{*}$. If you know $x\left(e_{i}\right)=x_{i}$
Then yow knew $n(U)$ for an W :

$$
\eta(v)=x\left(V^{i} e_{i}\right)=V^{i} x\left(e_{i}\right)=V^{i} x_{i}
$$

The numbers X_{i} are the components of X with respect to the basis e_{0}, \ldots, e_{3}.

Concretely:
V is the set of tivectos
A convector is just an elemat of V^{*}.

$$
\left[n_{0}, . . n_{3}\right]\left[\begin{array}{l}
v^{0} \\
\vdots \\
v^{3}
\end{array}\right]
$$

Fou thus to mak sense

$$
\begin{aligned}
\hat{x}_{i} \hat{v}^{i} & =\hat{x}_{i} L_{j}^{i} V^{j} \\
& =x_{j} V^{j}
\end{aligned}
$$

Covectors eat vectors and give yan numbers, ad ue livew nus.

We've scen this.
$g\left(c^{2} P, U\right)$ as a fruction of U (doseand enooy)
$\frac{1}{c} g(N, O)$ as a fanction of U (obsend densidy)
This is the spacetue anales of "take a dot product".
In yam past lives yaun pobably corfasedvectors + cavectors beause of the structe of dit prodicts.

In fact, there is a way to cowent belween vectors + iovector in $S R$ as vell: we use g / G
I.r. siven a vector N defne

$$
\begin{aligned}
x(V) & =g(N, V) \\
& =N^{\top} G V \\
N \rightarrow x & =N^{\top} G
\end{aligned}
$$

And swen a covectior X defue a vector

$$
N=(x G)^{\top}=G^{\top} x^{\top}=G x^{\top}
$$

Note: $N \rightarrow n \rightarrow N$

$$
\left(N^{\top} G G\right)^{\top}=\left(N^{\top}\right)^{\top}=N
$$

Visually, vectors point. They ane taunts to curves.
Co-vectans do not point.
If does not point.
But, Grad f $=(d f G)^{\top}$ does!

$$
d f=\left[\partial_{0} f, \partial_{1} f, \partial_{2} f, \partial_{3} f\right]
$$

$$
\text { Gulf }=\left[\begin{array}{c}
\partial_{0} f \\
-\partial_{2} f \\
-\partial_{2} f \\
-\partial_{3} f
\end{array}\right] \quad \text { Moreover } \quad \begin{aligned}
\partial_{0} f & =\partial_{t} f \cdot \frac{\partial t}{\partial x_{0}} \\
& =\frac{1}{c} \partial_{t} f \\
\text { as } \frac{d x_{0}}{d t} & =c
\end{aligned}
$$

$$
d f(x)=g(\operatorname{Grd} f, x)
$$

Related differented opecato: Div

In an mutul coord system let $X(x)$ be a vactor field.

$$
\operatorname{Div} x(x)=\partial_{0} x^{0}+\partial_{1} x^{\prime}+\partial_{2} x^{2}+\partial_{3} x^{3}
$$

If we nepresent X in a diffeart coad sytan,

$$
\begin{aligned}
& \hat{X}(\hat{x})=L X(\hat{x}) \\
&=L X\left(L_{x}\right) \\
& I \text { dlain }^{\prime} \quad \hat{D_{i v}} \hat{X}\left(L_{x}\right)=D_{i v} X(x) \\
& \hat{\partial}_{0} \hat{X}^{0}=\partial_{i} \hat{X}^{0} \frac{\partial x_{i}}{\partial \hat{x}_{0}}=\left(L^{-1}\right)_{0}^{i} \partial_{i} \hat{X}^{0} \\
&=\left(L^{-1}\right)_{0}^{i} L^{0} j \partial_{i} X^{j} \\
& \sum_{k=0}^{3} \hat{\partial}_{k} \hat{X}^{k}=\sum_{k=0}^{3}\left(L^{-1}\right)_{k}^{i} L_{j}^{k} \partial_{i} x^{j} \\
&= \delta_{j}^{i} \partial_{i} x^{j}=\partial_{i} x^{i}
\end{aligned}
$$

Recall the divasuce thearem

Spacetme

$$
X=\left[\begin{array}{l}
x^{0} \\
\vec{x}
\end{array}\right]
$$

$$
\int_{\Omega} d v \vec{x} d V=\int_{\partial \Omega} x \cdot \nu
$$

$$
\begin{aligned}
\int_{a}^{b} \int_{\Omega} D_{i v} X d V d x^{0} & =\int_{a}^{b} \int_{\Omega} \frac{\partial x^{0}}{\partial x_{0}}+\operatorname{div} \vec{x} d V d x_{0} \\
& =\left.\int_{\Omega} x^{0}\right|_{x_{0}=b}-\left.\int_{\Omega} x^{0}\right|_{x_{0}=a}+\int_{a}^{b} \int_{\Omega} \operatorname{div}=d V
\end{aligned}
$$

If we interpect X° as a density (gonk per volume) $c \vec{x}$ as a flux gunk per ancon per time and $c \vec{x} \cdot \nu$ as the rte of flaw thrush the boundary

$$
\begin{aligned}
\left.\int X^{0} d V\right|_{x^{0}=b}=\left.\int X^{0} d V\right|_{x^{0}=a} & +\int_{a}^{b} \int_{\partial \Omega} c \vec{x} \cdot \vec{\nu} d A \underbrace{\frac{\int_{c} d x^{0}}{d t}}_{d t} \\
& +\int_{a}^{b} \int_{\Omega} c D i v X \underbrace{d t}_{\frac{d V}{\frac{d x^{0}}{c}}}
\end{aligned}
$$

condos meat $=$ stantry ament + total flaws in lout + production.
c Div X gonk/volume/luith. lexith/twe gurk/volune / tine
rate of production

