e.g. A rodet accelerates for 10 years at $10 \mathrm{~m} / \mathrm{s}$. (proper!)
How mach rest tue elapses?
How for does if tunnel w.r.t. He rest frame.

$$
\begin{aligned}
& K=10 \mathrm{~m} / \mathrm{s} \\
& \alpha=\frac{c^{2}}{K}\left[\begin{array}{l}
\sinh \left(\frac{k}{c} \tau\right) \\
\cosh \left(\frac{k}{2} \tau\right)
\end{array}\right] \\
& \frac{1 \text { year } \approx 3 \times 10^{7} \text { seconds } c \approx 3 \times 10^{8} \mathrm{~m} / \mathrm{s}=}{\tau=10 \text { years } \approx 3 \times 10^{8} \text { seconds }} \begin{array}{l}
K \tau=\frac{10}{c} \cdot 3 \times 10^{8}=\frac{3 \times 10^{9}}{3 \times 10^{8}}=10
\end{array} \quad \frac{c}{10 \mathrm{~m} / \mathrm{s}^{2}}=1 \text { yea } \\
& \frac{K}{C}=10^{7} \mathrm{~s}
\end{aligned}
$$

rest from tome elapsed $\frac{c}{10} \sinh (10)=11000$ yeas
distance $\quad c \cdot \frac{c}{10}[\cosh (10)-1] \approx \frac{i c}{10} \sinh (10)=11000$ 1.4.
11 kly

MY center 27 Kly edge 100 Kly mimed 2500 Kly

Reall fon Phys 101

Rules 1) conservation of mass

$$
\sum_{i=1}^{n} m_{i}=\sum_{j=1}^{k} \hat{m}_{j}
$$

2) Linear momestuas: $m_{i} u_{i}$

Corseuration of linar mormaturs

$$
\underbrace{\sum_{i=1}^{n} m_{i} u_{i}}_{\text {total monertan paior }}=\underbrace{\sum_{j=1}^{k} \hat{m}_{i} \hat{u}_{i}}_{\text {all after }}
$$

3) $\sum_{i=1}^{n} \frac{1}{2} m_{i}\left|u_{i}\right|^{2}=\sum_{j=1}^{k} \hat{m}_{j}\left|\hat{u}_{j}\right|^{2}$

Cosernation if evesy.
(it may be thare is other enasy involved; thomul, chewied

$$
E_{I}+\sum \frac{n_{i}}{2}\left|u_{i}\right|^{2}=\hat{E}_{I}+\sum \frac{\hat{z}_{2}}{2}\left|\hat{u}_{j}\right|^{2}
$$

2) is a conseruce of Nawtor 2,3

$$
\begin{gathered}
\frac{d}{d t} p_{1}=F_{21} \quad \frac{d}{d t} p_{2}=F_{12}=-F_{21} \\
\frac{d}{d \tau}\left(p_{1}+p_{2}\right)=0
\end{gathered}
$$

Well assme other observes aguce on m_{i}, \hat{w}_{i} al E_{I}, \hat{E}_{I}.
$11,2), 3$) in ore Gulilem frave \Rightarrow in all:
$u_{i} \rightarrow u_{i}-v$ in a frome boostal by vel v.

$$
\begin{aligned}
\sum m_{i}\left(u_{i}-v\right) & =\sum m_{i} u_{i}-\left(\sum m_{i}\right) v \\
& =\sum \sum_{j} \hat{m}_{j} \hat{u}_{j}-\left(\sum \hat{m}_{j}\right) v \\
& =\sum m_{j}\left(\hat{u}_{j}-v\right) \\
\sum \frac{1}{2}\left|\left|u_{i}-v\right|^{2}\right. & =\sum \frac{m_{i}}{2}\left|u_{i}\right|^{2}-\sum n_{i} u_{i} \cdot v \sum_{i} \frac{1}{2} m_{i}|v|^{2} \\
& =\sum \frac{\hat{m}_{j}}{\frac{m_{j}}{2}}\left|u_{j}\right|^{2}-\left(\sum \hat{m}_{j} \hat{m}_{j} \cdot v+\left(\sum_{j} \frac{1}{2} \hat{m}_{j}\right)|v|^{2}\right.
\end{aligned}
$$

$$
=\sum \frac{1}{2} \hat{m}_{j}\left|u_{j}-v\right|^{2}
$$

Exerise: If 3) holds in evay gulilem frome then so do D al 2)

Congention of enengy is belrack.

These laws are ast compatible with δR.
Recall, for a boosted obseves velocity u becmes

$$
\left.\begin{array}{rl}
\frac{u-v}{1-\frac{u v}{c^{2}}} \quad\left[\begin{array}{cc}
c & -S \\
-S & c
\end{array}\right]\left[\begin{array}{l}
c \\
u
\end{array}\right]= & C_{c}-S_{u} \\
-S_{c}+C_{u}
\end{array}\right] \frac{-S_{c}+C_{u}}{c-S_{u / c}}+1-\frac{u-v}{1-\frac{v}{c}}
$$

$$
\begin{aligned}
& M=m_{1}+m_{2} \\
& m_{1} u_{1}+m_{2} u_{2}=M u \\
& u=\left(\frac{m_{1}}{M} u_{1}\right)+\binom{m_{2}}{M} u_{2}
\end{aligned}
$$

$$
m_{1}=m_{2}=m \quad u=\frac{1}{2}\left(u_{1}+u_{2}\right)
$$

E.5. $\quad u_{2}=-u_{1}$

$$
u_{1} \quad u_{2}=-u_{1}
$$

Now boost to fume with vel u_{1}

$$
\begin{aligned}
& \hat{u}_{1}=0 \quad \hat{u}_{2}=\frac{u_{2}-u_{1}}{1-\frac{u_{1} u_{2}}{c^{2}}}=\frac{-2 u_{1}}{1+\frac{u_{1}^{2}}{c^{2}}} \\
& \hat{u}=\frac{\left(u_{1}+u_{2}\right) / 2-u_{1}}{1-\frac{u_{1}\left(u_{1}+u_{2}\right)}{2 c^{2}}}=\frac{-u_{1}}{1-0}=-u_{1} \\
& \frac{\hat{u}_{1}+\hat{u}_{2}}{2}=-\frac{u_{1}}{1+\frac{u_{1}^{2}}{c^{2}}} \neq-u_{1}=\hat{u} \quad \text { unless } u_{1}=0 .
\end{aligned}
$$

Instend: $\quad P_{i}=n_{i} V_{i}$ 4-velocity of purticle;

$$
\uparrow \text { mass of particle } i \text {. }
$$

4- mamation of particle i.

Note: two masses im phyires:

1) Inetral

$$
\frac{d}{d t}(m v)=F
$$

2) Gruitational $F=-\frac{G_{m} M}{r^{2}}$

The mass hae is (almoot) inetral, not grmitational.
We call it the rest mass of the particle, and it is an intrimaic quantily aguced ypon by all obsevers

$$
P_{i}=m_{i} \quad \gamma(v)\left[\begin{array}{l}
c \\
V_{i}
\end{array}\right]
$$

New low: 4 mamentur is proserved

$$
\sum_{i} P_{i}=\sum_{j} \hat{P}_{j}
$$

a) time conpoiest $c \sum m_{i} \gamma\left(v_{i}\right)=c \sum \hat{m}_{j} \gamma\left(\hat{v}_{s}\right)$
b) squee $\sum m_{i} \gamma\left(v_{i}\right) v_{i}=\sum \hat{m_{j}} \gamma\left(\hat{v}_{j}\right) \hat{v}_{j}$
interpertation 1) $m_{i} \gamma\left(v_{i}\right)$ is the obseved muss of porticle i.

This is a) conserustion of mass
b) conseruater of momatur

$$
\begin{aligned}
m \gamma(v) & =m_{I} \\
m_{I} V & \rightarrow 3-\text { mamertion. }
\end{aligned}
$$

Interpuctation 2)

$$
\begin{aligned}
& \gamma(v)=\frac{1}{\sqrt{1-\left(\frac{c}{c}\right)^{2}}}=1+\frac{1}{2}\left(\frac{v}{c}\right)^{2}+\partial\left(\left(\frac{v}{c}\right)^{4}\right) \\
& \operatorname{cm} \gamma(v)=c m+\frac{1}{2} \frac{m}{c} v^{2}+O\left(\left(\frac{v}{c}\right)^{4}\right) c
\end{aligned}
$$

Multiply by are mae c

$$
\underbrace{m c^{2}}_{\text {classical kinetic every }}+\frac{\left.\frac{1}{2} m v^{2}+O\left(\frac{v}{c}\right)^{4}\right) m c^{2}}{L^{2}}
$$

rest energy of the particle, proportional to vert mos

$$
p=\left[\begin{array}{l}
p_{0}^{0} \\
p^{\prime} \\
p^{2} \\
p^{3}
\end{array}\right]
$$

c P^{0} is interpreted as the observed ency of the ponticle
(rest + kinetic) in this frame.
$c P^{0}=c^{2} Y(v) m$, minimized at $m c^{2}$ at $v=0$.
justifies the name "vest eneyy"

We will start representry obseves in spucetime by traelike vectars of length c.

$$
\underset{\sim}{p} \prod^{\sim} \underset{\sim}{u}
$$

What is the energy measued by U ?

In a frame where $U=\left[\begin{array}{l}c \\ 0\end{array}\right]$ it is $\rho^{0}=c g(P, U)$.
In mother frime $g(f, 0)=g(\hat{\rho}, \hat{v})$.
So energy is $g(\underset{\sim}{p}, \underset{\sim}{0})$.

Taking measoremats by dot praducts is commom.
Here's another:

Chum has width $\frac{1}{\gamma} \Delta x$
and new density $\gamma \frac{\Sigma}{\Delta x}$

Tee. New density $=\gamma \sigma_{0}$

Let me make a vector in the rest fire $\left[\begin{array}{c}\sigma_{0} \\ 0\end{array}\right]$
In a froe traveling in which the particles are tacky with veloce v, $\gamma(v)=c$

$$
\left[\begin{array}{ll}
C & S \\
S & C
\end{array}\right]\left[\begin{array}{l}
\sigma_{0} \\
0
\end{array}\right]=\left[\begin{array}{ll}
C & \sigma_{0} \\
S & \sigma_{0}
\end{array}\right]
$$

In the time position we have the obsenid density.

A couple of ways to thank about this:

$$
\frac{\sigma_{0}}{c}, c\left[\begin{array}{l}
c \\
S
\end{array}\right]
$$

$\rightarrow 4$-velocity of the particles.

Let's multiply by c

$$
\begin{aligned}
& \sum_{\text {rest density }}^{\sigma_{0}} \frac{c\left[\begin{array}{l}
c \\
s
\end{array}\right]}{4 \text {-velocity }} \\
& \text { components: } \quad \cos C \rightarrow \begin{array}{c}
c \cdot \text { ion } \\
\text { heard }
\end{array} \\
& c \sigma_{0} S=c \sigma_{0} C\left(\frac{S}{C}\right) \\
& =\cos \frac{V}{C} \\
& =\operatorname{soc} v \\
& \text { componits me }\left[\begin{array}{c}
c \sigma \\
\sigma v \\
\sim
\end{array}\right] \begin{array}{l}
\text { dbsend } \\
\text { dersily } \\
\text { particle flux }
\end{array}
\end{aligned}
$$

So this is a density -flux vectors N.
If I am obsever with 4 -velocity V
then in my rest frame

$$
\begin{aligned}
g(V, N) & =[c, 0] G\left[\begin{array}{c}
c \sigma \\
\sigma v
\end{array}\right] \\
& =c^{2} \sigma
\end{aligned}
$$

Bat this is trave in ar fume

$$
g(\underset{\sim}{V}, \underset{\sim}{N})=c^{2} \sigma
$$

