E.g. $\alpha(t)=\left[\begin{array}{c}c t \\ x(t)\end{array}\right]$, paretarad by
coardinate true.

$$
\begin{aligned}
\left|\alpha^{\prime}\right|^{2}=g\left(\alpha^{\prime}, \alpha^{\prime}\right) & =c^{2}-\left|x^{\prime}\right|^{2} \\
& =c^{2}-|v|^{2} \\
& =c^{2}\left(1-\left|\frac{k}{c}\right|^{2}\right) \\
& =c^{2} \gamma^{-2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{c \alpha^{\prime}}{\left|\alpha^{\prime}\right|}=\frac{c \alpha^{\prime}}{c \gamma^{\prime}}=\gamma \alpha^{\prime} & =\gamma\left[\begin{array}{c}
c \\
x^{\prime}(t)
\end{array}\right] \\
& =\gamma\left[\begin{array}{c}
c \\
\vec{v}
\end{array}\right]
\end{aligned}
$$

Your lext uses notution V for $\alpha(s)$'s 4-velocity. The 4 is old-fishiened.

And athanh reparancterices is hald computios $\frac{d \tau}{d s}$ is easy.

$$
\begin{aligned}
& \beta(\tau)=\alpha(s(\tau)) \\
& c=\left|\beta^{\prime}(\tau)\right|=\left|\alpha^{\prime}(s(\tau))\right| \frac{d s}{d \tau} \\
& \frac{d \tau}{d s}=\frac{\left|\alpha^{\prime}(s)\right|}{c} \quad \frac{d s}{d \tau}=\frac{c}{\left|\alpha^{\prime}\right|}
\end{aligned}
$$

If the cove is panaterad by coordiote tme t

$$
\begin{gathered}
\alpha^{\prime}=\left[\begin{array}{l}
c \\
\vec{v}
\end{array}\right] \quad \text { ad } \quad\left|\alpha^{\prime}\right|^{2}=c^{2}\left(1-\frac{\vec{v}^{2}}{c^{2}}\right) \\
\left|\alpha^{\prime}\right|=\frac{c}{\gamma(\mid \overrightarrow{\mid r})} \\
\frac{d \tau}{d t}=\gamma^{-1}(\vec{v}) \quad \frac{d t}{d \tau}=\gamma(|v|) \text { expesses } \\
\text { twe dilation. }
\end{gathered}
$$

E.5. Radial motion

$$
\alpha(t)=\left[\begin{array}{ll}
c t \\
R \cos (\omega t) \\
R \sin (\omega t) \\
0
\end{array}\right] \quad \omega \leq \frac{c}{R} \quad \text { for otherwise yea towel } 2 \pi R
$$ in time $\frac{2 \pi}{\omega}$ with speed R_{ω}.

$$
\begin{aligned}
\frac{d \tau}{d t}-\frac{1}{c}\left|\frac{d \alpha}{d t}\right| & =\frac{1}{c} \sqrt{c^{2}-R_{\omega}^{2}} \\
& =\sqrt{1-\left(\frac{R w}{c}\right)^{2}}
\end{aligned}
$$

Or: $|v|^{2}=\left(R_{\omega}\right)^{2}$ so $\frac{d \tau}{d t}=\gamma(|v|)=0$
How much proper tame elapses in a single rotation?

Time fo a rotation: $\frac{2 \pi}{\omega}$

$$
\frac{2 \pi}{\omega} \sqrt{1-\left(\frac{R_{0}}{c}\right)^{2}} \approx \frac{2 \pi}{\omega}, f \quad\left|R_{\omega}\right| \ll c .
$$

Consequence:

Orbiting at light speed, time does not pass

Consequare

Head trading faster:
Your head is younger than yourfeet Next HW: haw mach younger?

Curvature of a curve in the plane
$\alpha^{\prime \prime}$ mixes up whit the cave is dons with hew you parmoterize A.

How curvy is it? a) Repurn by acclength
b) $\left|\alpha^{\prime \prime}\right|$ tells you corruture.
e.g.

$$
\begin{aligned}
& \alpha(s)=(R \cos (\omega s), R \sin (\omega s)) \\
& \alpha^{\prime \prime}=-\omega^{2}(R(\cos (\cos), R \sin (\omega s)) \\
& \left|\alpha^{\prime \prime}\right|=\omega^{2} R
\end{aligned}
$$

(purt ter the cone's inme
We can elamemete the parmeterization depaderce by lookus at curos pameteried by arcleath.

$$
\omega=\frac{1}{R}
$$

Now $\alpha^{\prime \prime}=-\frac{1}{R^{2}} \alpha$ and $\left|\alpha^{\prime \prime}\right|=\frac{1}{R}$
Ting circk, hase $1 / R$. Big circle, tom $\frac{k}{R}$ We call this quity $\left|\alpha^{\prime \prime}\right|$ when α is pamed by arlegth the conatue of the cane. Units: $1 / L$.

How an α^{\prime} change?

$$
\begin{aligned}
& \alpha^{\prime} \cdot \alpha^{\prime}=1 \\
& \text { so } \frac{d}{d s} \alpha^{\prime} \cdot \alpha^{\prime}=0 \\
& \quad L_{s}=2 \alpha \cdot \alpha^{\prime \prime} .
\end{aligned}
$$

So $\alpha^{\prime \prime}$ is alums pep to α^{\prime}. All $\alpha^{\prime} \mathrm{cm}$ do is rotate.

Space tue pretors

Analogavdly, \quad-velocity: $\frac{d \alpha}{d \tau}=V$
4-accelecation: $\frac{d^{2} \alpha}{d \tau^{2}}$

$$
\begin{aligned}
& V(s)=c \frac{\alpha^{\prime}}{\left|\alpha^{\prime}\right|} \quad \frac{d r}{d s}=\frac{1}{c}\left|\alpha^{\prime}\right| \\
& \frac{d V}{d \tau}=\frac{d V}{d s} \cdot \frac{d s}{l \tau}=\frac{\frac{d V}{d s} \cdot \frac{c}{\left|\alpha^{\prime}\right|}}{} \begin{array}{l}
\frac{\downarrow}{T \text { Tpically a mess. }}
\end{array}
\end{aligned}
$$

In fact $\quad V(s)=\frac{c \alpha^{\prime}}{\left(\left|\alpha^{\prime}\right|^{2}\right)^{1 / 2}}$

$$
\begin{aligned}
& \frac{d V}{d s}=\frac{c \alpha^{\prime \prime}}{\left|\alpha^{\prime}\right|}+c \alpha^{\prime}\left(\frac{-1}{2}\right) \frac{1}{\left|\alpha^{\prime}\right|^{3}} 2 \alpha^{\prime} \cdot \alpha^{\prime \prime} \\
&=\frac{c \alpha^{\prime \prime}}{\left|\alpha^{\prime}\right|}-c \frac{\left(\alpha^{\prime} \cdot \alpha^{\prime \prime}\right)}{\left|\alpha^{\prime}\right|^{3}} \alpha^{\prime} \\
&=\frac{c}{\left|\alpha^{\prime}\right|}\left[\left|\alpha^{\prime}\right|^{2} \alpha^{\prime \prime}-\left(\alpha^{\prime} \cdot \alpha^{\prime \prime}\right) \alpha^{\prime}\right] \\
& \frac{d V}{d r}=\left(\frac{c^{2}}{\left|\alpha^{\prime}\right|^{4}}\right)\left[\left|\alpha^{\prime}\right|^{2} \alpha^{\prime \prime}-\alpha^{\prime} \cdot \alpha^{\prime \prime} \alpha^{\prime}\right]
\end{aligned}
$$

e.s. curves pameteriad by cood tine

$$
\begin{aligned}
\alpha^{\prime} & =\left[\begin{array}{l}
c \\
\vec{v}
\end{array}\right] \\
\left|\alpha^{\prime}\right| & =c \gamma(|v|)^{-1} \\
\frac{d V}{d \tau} & =\frac{\gamma^{4}}{c^{2}}\left[c^{c^{2}} \gamma^{-2} \alpha^{\prime \prime}-g\left(\alpha^{\prime}, \alpha^{\prime}\right) \alpha^{\prime}\right] \\
& =\gamma^{2}\left[\begin{array}{c}
0 \\
v^{\prime}
\end{array}\right]-\frac{\gamma^{4}}{c^{2}} g\left[\left[\begin{array}{l}
c \\
\vec{v}
\end{array}\right],\left[\begin{array}{l}
0 \\
\vec{v}
\end{array}\right]\right] \alpha^{\prime} \\
& =\gamma^{2}\left[\begin{array}{l}
0 \\
v^{\prime}
\end{array}\right]+\frac{\gamma^{4}}{c^{2}}\left(\vec{v} \cdot \vec{v}^{\prime}\right)\left[\begin{array}{l}
c \\
\vec{v}
\end{array}\right]
\end{aligned}
$$

Exerase: $\quad|\vec{v}| \frac{d}{d t}|\vec{v}|=\vec{v} \cdot \vec{v}^{\prime}$ to get text's desorection

$$
\frac{d V}{d \tau}=A_{1} \quad g(A, A)=a^{2}
$$

In a forme where $\vec{v}=0$

$$
A=\left[\begin{array}{c}
0 \\
v^{\prime}
\end{array}\right], \quad a=\left|v^{\prime}\right| .
$$

e.g. radial motion

$$
\begin{aligned}
& \alpha(t)=\left[\begin{array}{c}
c t \\
R \cos (\omega t) \\
R \sin (\omega t) \\
0
\end{array}\right] \quad|R \omega|<c \\
& \alpha^{\prime}=\left[\begin{array}{c}
c \\
-R_{\omega} \sin (\omega t) \\
R_{\omega} \cos (\omega t) \\
0
\end{array}\right] \\
& \left|a^{\prime}\right|^{2}=c^{2}-R^{2} w^{2} \\
& =c^{2}\left(1-\left(\frac{R w}{c}\right)^{2}\right) \\
& V=\frac{1}{\left(1-\left(\frac{R_{\tau}}{c}\right)^{2}\right)^{1 / 2}}\left[\begin{array}{c}
c \\
-R_{\omega} \sin (\omega t) \\
R_{\omega} \cos (t)
\end{array}\right] \\
& \frac{d t}{d \tau}=\frac{c}{\left|\alpha^{\prime}\right|} \quad \text { (onitless!) }=\frac{1}{\left(1-\left(\frac{R c}{c}\right)^{2}\right)^{1 / 2}} \\
& A=\frac{d V}{d \tau}=\frac{d V}{d t} \frac{d t}{d \tau}=\frac{-\omega^{2}}{\left(1-\left(\frac{R_{2}}{2}\right)^{2}\right)} \quad\left[\begin{array}{c}
0 \\
\left.R_{\cos } 6 t\right) \\
R_{\sin }(\omega t)
\end{array}\right]
\end{aligned}
$$

In the plane
$\alpha^{\prime}(s)=\left[\begin{array}{c}\cos (\theta(s)) \\ \sin (\theta(s))\end{array}\right]$ for a unit speed curve.

$$
\alpha^{\prime \prime}(s)=\underbrace{\left[\begin{array}{c}
-\sin (\theta) \\
\cos (\theta)
\end{array}\right]}_{\left(\alpha^{\prime}\right)^{\perp}} \theta^{\prime}(s)
$$

$$
\begin{aligned}
& \left|\alpha^{\prime \prime}(s)\right|=\left|\theta^{\prime}(s)\right| \\
& \text { ad } \theta^{\prime}>0 \Rightarrow \text { tom left } \\
& <0 \Rightarrow \text { tons night }
\end{aligned}
$$

$\left|\theta^{\prime}(s)\right|$ is the corvature of the cure.

Ditto: in $1+1$ Lorenzion rose

$$
\begin{aligned}
& \alpha^{\prime}(\tau)=c\left[\begin{array}{l}
\cosh (\psi(\tau)) \\
\sinh (\psi(\tau))
\end{array}\right] \text { for sone } \tau \\
& \alpha^{\prime \prime}(\tau)=\underbrace{\left[\begin{array}{l}
\sinh (\psi(\tau)) \\
\cosh (\psi(\tau))
\end{array}\right]}_{\left(\alpha^{\prime}\right)^{\perp}} \psi^{\prime}(\tau) \\
& \underset{\left(\alpha^{\prime}\right)^{\perp}}{\overbrace{\alpha^{\prime}}}
\end{aligned}
$$

$$
\left|\alpha^{\prime \prime}(\tau)\right|=c\left|\psi^{\prime}(\tau)\right|
$$

I'll still cull $\frac{1}{c}\left|\alpha^{\prime \prime}\right|$ the corruatue of the carve.

What does constant acceleration look like?

Plane $\quad\left|\alpha^{\prime \prime}\right|=K$

$$
\begin{aligned}
&\left\lfloor\left|\theta^{\prime}\right|=\left|\alpha^{\prime \prime}\right| \text { so } \theta^{\prime} \equiv K \text { or } \theta^{\prime} \equiv-K\right. \\
& \theta=K s+s_{0} \\
& \alpha^{\prime}=\left[\begin{array}{r}
-\sin \left(s_{s}\left(s_{0}\right)\right. \\
\cos \left(x^{\prime}\left(s^{\prime}+s_{0}\right)\right.
\end{array}\right] \\
& \alpha= \frac{1}{k}\left[\begin{array}{l}
\cos \left(\alpha_{s}+s_{0}\right) \\
\sin \left(\alpha_{s}+s_{0}\right)
\end{array}\right]+\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]
\end{aligned}
$$

\rightarrow traverse a circle of radius $\frac{1}{K}$.

Spucetime:

$$
\begin{aligned}
& \alpha^{\prime \prime}(\tau)=c\left[\begin{array}{l}
\sinh (\psi(\tau)) \\
\cosh (\psi(\tau))
\end{array}\right] \psi^{\prime}(\tau) \\
&\left|\alpha^{\prime \prime}\right|=c \underbrace{\left|\psi^{\prime}(\tau)\right|}_{k} \\
& \psi(\tau)=k \tau+\psi_{0} \\
& \alpha^{\prime}(\tau)=c\left[\begin{array}{l}
\cosh \left(k \tau+\psi_{0}\right) \\
\sinh \left(k \tau+\psi_{0}\right)
\end{array}\right] \\
& \alpha(\tau)=\frac{c}{K}\left[\begin{array}{c}
\sinh \left(x \tau+\psi_{0}\right) \\
\cosh \left(x \tau+\psi_{0}\right)
\end{array}\right]+\left[\begin{array}{c}
c t_{0} \\
x_{0}
\end{array}\right] \\
& \downarrow \\
& \alpha_{0}^{2} \omega L \\
& c^{2} t^{2}-x^{2}=\frac{c^{2}}{k^{2}}\left[s^{2}-c^{2}\right] \\
&=-\frac{c^{2}}{k^{2}}
\end{aligned}
$$

Chum has width $\frac{1}{\gamma} \Delta x$
and new density $\gamma \frac{\Sigma}{\Delta x}$

Tee. New density $=\gamma \sigma_{0}$

Let me make a vector in the rest fire $\left[\begin{array}{c}\sigma_{0} \\ 0\end{array}\right]$
In a froe traveling in which the particles are tacky with veloce v, $\gamma(v)=c$

$$
\left[\begin{array}{ll}
C & S \\
S & C
\end{array}\right]\left[\begin{array}{l}
\sigma_{0} \\
0
\end{array}\right]=\left[\begin{array}{ll}
C & \sigma_{0} \\
S & \sigma_{0}
\end{array}\right]
$$

In the time position we have the obsenid density.

A couple of ways to thank about this:

$$
\frac{\sigma_{0}}{c}, c\left[\begin{array}{l}
c \\
S
\end{array}\right]
$$

$\rightarrow 4$-velocity of the particles.

Let's multiply by c

$$
\begin{aligned}
& \sum_{\text {rest density }}^{\sigma_{0}} \frac{c\left[\begin{array}{l}
c \\
s
\end{array}\right]}{4 \text {-velocity }} \\
& \text { components: } \quad \cos C \rightarrow \begin{array}{c}
c \cdot \text { ion } \\
\text { dear }
\end{array} \\
& c \sigma_{0} S=c \sigma_{0} C\left(\frac{S}{C}\right) \\
& =\cos \frac{V}{C} \\
& =\operatorname{soc} v \\
& \text { componits me }\left[\begin{array}{c}
c \sigma \\
\sigma v \\
\sim
\end{array}\right] \begin{array}{l}
\text { dbsend } \\
\text { dersily } \\
\text { particle flux }
\end{array}
\end{aligned}
$$

So this is a density -flux vectors N.
If I am obsever with 4 -velocity V
then in my rest frame

$$
\begin{aligned}
g(V, N) & =[c, 0] G\left[\begin{array}{c}
c \sigma \\
\sigma v
\end{array}\right] \\
& =c^{2} \sigma
\end{aligned}
$$

Bat this is trave in ar fume

$$
g(\underset{\sim}{V}, \underset{\sim}{N})=c^{2} \sigma
$$

