Lest class:
$\alpha(s)$: carve in spacetime

$$
\alpha(s)=\left[\begin{array}{l}
c t(s) \\
\vec{x}(s)
\end{array}\right]
$$

$\alpha^{\prime}(s)$ trusfors as a vector. A curve is choral if α^{\prime} always is.

$$
\int_{a}^{b} \frac{1}{c} \sqrt{g\left(\alpha^{\prime}, \alpha^{\prime}\right)} d s=\Delta \tau, \begin{aligned}
& \text { change in proper time } \\
& \text { alary cave. }
\end{aligned}
$$

elapsal tie for the thrucllars

$$
\text { for } s=a \text { to } s=b \text {. }
$$

A cure con be reparmetoized:

$\alpha(s(\sigma)) \quad$ We require $\frac{d s}{d \sigma} \geqslant 0$ so that
There is no dabble bucking.
between points
along causal carve
Theron: Proper time \uparrow is independent of the parmetoization.
Pf: Let $\alpha(s)$ be a causal cave and corsoden the proper time between $\alpha\left(s_{0}\right)$ and $\alpha\left(s_{1}\right)$.

Let

$$
\beta(\sigma)=\alpha(s(\sigma)) .
$$

be a reparmetecization with $s_{0}=s\left(\sigma_{0}\right), s_{1}=s\left(\sigma_{1}\right)$.

Than $\beta^{\prime}(\sigma)=\alpha^{\prime}(s(\sigma)) \frac{d s}{d \sigma}$ and

$$
\sqrt{g\left(\beta^{\prime}, \beta^{\prime}\right)}=\sqrt{g\left(\alpha^{\prime}, \alpha^{\prime}\right)} \frac{d s}{l_{\sigma}} \text {, uni } \frac{d s}{d \sigma} \geqslant 0 \text {. }
$$

By clause of vars,

$$
\begin{aligned}
\int_{\sigma_{0}}^{\sigma_{1}} \frac{1}{c} \sqrt{s\left(\beta^{\prime} \beta^{\prime}\right)} d \sigma & =\int_{\sigma_{0}}^{\sigma_{1}} \frac{1}{c} \sqrt{g\left(\alpha^{\prime}, \alpha^{\prime}\right)} \frac{d s}{d \sigma} d \sigma \\
& =\int_{s_{0}}^{s_{1}} \frac{1}{c} \sqrt{g\left(\alpha^{\prime}, \alpha^{\prime}\right)} d s
\end{aligned}
$$

Def: A causal curve is prometaizel by proper the if $g\left(\alpha^{\prime}, \alpha^{\prime}\right)=c^{2}$ along the cure.

Note, for such a cave,

$$
\int_{a}^{b} \frac{1}{c} \sqrt{g\left(\alpha^{\prime}, \alpha^{\prime}\right)} d s=\int_{a}^{b} 1 d s=b-a .
$$

How much proper time elopes farm $s=a$ to $s=6$? $b-a$.
The pameter encodes this.
If α is a cure in me coond systan al $\left[\begin{array}{l}\hat{t} \\ \hat{y}\end{array}\right]=C^{-1} L C\left[\begin{array}{l}t \\ x\end{array}\right]+Z$, then $\hat{\alpha}=L \alpha+Z$. (The C's are built in).

So $\hat{\alpha}^{\prime}=L \alpha^{\prime}$. In particulu,

$$
g\left(\hat{\alpha}^{\prime}, \tilde{\alpha}^{\prime}\right)=g\left(L \alpha^{\prime}, L \dot{\alpha}^{\prime}\right)=g\left(\alpha^{\prime}, \alpha^{\prime}\right)
$$

So if α is prometaized by arcleathy so as $\hat{\alpha}$.

A geamet-ic analosy:

Dcf: A cure in the plme $\left(\mathbb{R}^{2}\right)^{(s)}$ or \mathbb{R}^{3} by arcleagth if $|\alpha \cdot(0)|=1$ for alls.

$$
\text { e.9. } \alpha(s)=[R \cos (s / R), R \sin (s / R)] \text { is }
$$

parareteised by rclength. $\alpha^{\prime}(s)=[\cos (s / R), \sin (s / R)]$.
How luys to so orcend the circle? $2 \pi R$.
How for nound the curle? 2uR.

As s goes up by 1 so does arcleath

Given any curve in the plane with $\alpha^{\prime} \neq 0$ we can reparmetere it by arclegth.

$$
\begin{aligned}
\beta(\sigma) & =\alpha(s(\sigma)) \\
\beta^{\prime}(\sigma) & =\alpha^{\prime}(s(\sigma)) s^{\prime}(\sigma) \\
\mid & =\left|\alpha^{\prime}(s(\sigma))\right| \frac{d s}{d \sigma}
\end{aligned}
$$

S. $\quad \frac{d s}{d \sigma}=\frac{1}{\left|\alpha^{\prime}(s)\right|} \quad\left(\right.$ uses $\left.\quad\left|\alpha^{\prime}(s)\right| \neq 0\right)$
which is an oDe to solve for s. In fact

$$
\left|\alpha^{\prime}(s)\right| d s=d_{\sigma}
$$

So

$$
\sigma=\int_{s_{0}}^{s}\left|\alpha^{\prime}(t)\right| d t
$$

Now solve for $s(\sigma)$. \rightarrow possible, in principle: $\frac{d \sigma}{d s}>0$.
But in practice, this is awful.

1) Solve an impossible integral
2) Solve a impossible alsebrare eq.

Difto, gwen a twelike curve, we con alums parneterize it by proper time.

Now, given ry cure $\alpha(s)$, we can dotemne its tament vector at ay poit if itwere panctenized by proge tme. It's just
$c \frac{\alpha^{\prime}(s)}{\sqrt{g\left(\alpha^{\prime}, \alpha^{\prime}\right)}} \quad$ which lus length c.

This vescales is the unfinitesmal version of reparmeterizing

Def the 4 -velocity of a timelile curne $\alpha(s)$ is

$$
c \frac{\alpha^{\prime}(s)}{\sqrt{g\left(\alpha^{\prime}, \alpha^{\prime}\right)}}
$$

It's just the velocily at a repametoized cane.

When α^{\prime} is tarelike I'll write $\left|\alpha^{\prime}\right|$ rale kem $\sqrt{g\left(\alpha^{\prime}, \alpha^{\prime}\right)}$
E.g. $\alpha(t)=\left[\begin{array}{c}c t \\ x(t)\end{array}\right]$, paretarad by
coardinate true.

$$
\begin{aligned}
\left|\alpha^{\prime}\right|^{2}=g\left(\alpha^{\prime}, \alpha^{\prime}\right) & =c^{2}-\left|x^{\prime}\right|^{2} \\
& =c^{2}-|v|^{2} \\
& =c^{2}\left(1-\left|\frac{k}{c}\right|^{2}\right) \\
& =c^{2} \gamma^{-2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{c \alpha^{\prime}}{\left|\alpha^{\prime}\right|}=\frac{c \alpha^{\prime}}{c \gamma^{\prime}}=\gamma \alpha^{\prime} & =\gamma\left[\begin{array}{c}
c \\
x^{\prime}(t)
\end{array}\right] \\
& =\gamma\left[\begin{array}{c}
c \\
\vec{v}
\end{array}\right]
\end{aligned}
$$

Your lext uses notution V for $\alpha(s)$'s 4-velocity. The 4 is old-fishiened.

And athanh reparancterices is hald computios $\frac{d \tau}{d s}$ is easy.

$$
\begin{aligned}
& \beta(\tau)=\alpha(s(\tau)) \\
& c=\left|\beta^{\prime}(\tau)\right|=\left|\alpha^{\prime}(s(\tau))\right| \frac{d s}{d \tau} \\
& \frac{d \tau}{d s}=\frac{\left|\alpha^{\prime}(s)\right|}{c} \quad \frac{d s}{d \tau}=\frac{c}{\left|\alpha^{\prime}\right|}
\end{aligned}
$$

If the cove is panaterad by coordiote tme t

$$
\begin{gathered}
\alpha^{\prime}=\left[\begin{array}{l}
c \\
\vec{v}
\end{array}\right] \quad \text { ad } \quad\left|\alpha^{\prime}\right|^{2}=c^{2}\left(1-\frac{\vec{v}^{2}}{c^{2}}\right) \\
\left|\alpha^{\prime}\right|=\frac{c}{\gamma(\mid \overrightarrow{\mid r})} \\
\frac{d \tau}{d t}=\gamma^{-1}(\vec{v}) \quad \frac{d t}{d \tau}=\gamma(|v|) \text { expesses } \\
\text { twe dilation. }
\end{gathered}
$$

E.5. Radial motion

$$
\alpha(t)=\left[\begin{array}{ll}
c t \\
R \cos (\omega t) \\
R \sin (\omega t) \\
0
\end{array}\right] \quad \omega \leq \frac{c}{R} \quad \text { for otherwise yea towel } 2 \pi R
$$ in time $\frac{2 \pi}{\omega}$ with speed R_{ω}.

$$
\begin{aligned}
\frac{d \tau}{d t}-\frac{1}{c}\left|\frac{d \alpha}{d t}\right| & =\frac{1}{c} \sqrt{c^{2}-R_{\omega}^{2}} \\
& =\sqrt{1-\left(\frac{R w}{c}\right)^{2}}
\end{aligned}
$$

Or: $|v|^{2}=\left(R_{\omega}\right)^{2}$ so $\frac{d \tau}{d t}=\gamma(|v|)=0$
How much proper tame elapses in a single rotation?

Time fo a rotation: $\frac{2 \pi}{\omega}$

$$
\frac{2 \pi}{\omega} \sqrt{1-\left(\frac{R_{0}}{c}\right)^{2}} \approx \frac{2 \pi}{\omega}, f \quad\left|R_{\omega}\right| \ll c .
$$

Consequence:

Orbiting at light speed, time does not pass

Consequare

Head trading faster:
Your head is younger than yourfeet Next HW: haw mach younger?

Curvature of a curve in the plane
$\alpha^{\prime \prime}$ mixes up whit the cave is dons with hew you parmoterize A.

How curvy is it? a) Repurn by acclength
b) $\left|\alpha^{\prime \prime}\right|$ tells you corruture.
e.g.

$$
\begin{aligned}
& \alpha(s)=(R \cos (\omega s), R \sin (\omega s)) \\
& \alpha^{\prime \prime}=-\omega^{2}(R(\cos (\cos), R \sin (\omega s)) \\
& \left|\alpha^{\prime \prime}\right|=\omega^{2} R
\end{aligned}
$$

(purt ter the cone's inme
We can elamemete the parmeterization depaderce by lookus at curos pameteried by arcleath.

$$
\omega=\frac{1}{R}
$$

Now $\alpha^{\prime \prime}=-\frac{1}{R^{2}} \alpha$ and $\left|\alpha^{\prime \prime}\right|=\frac{1}{R}$
Ting circk, hase $1 / R$. Big circle, tom $\frac{k}{R}$ We call this quity $\left|\alpha^{\prime \prime}\right|$ when α is pamed by arlegth the conatue of the cane. Units: $1 / L$.

How an α^{\prime} change?

$$
\begin{aligned}
& \alpha^{\prime} \cdot \alpha^{\prime}=1 \\
& \text { so } \frac{d}{d s} \alpha^{\prime} \cdot \alpha^{\prime}=0 \\
& \quad L_{s}=2 \alpha \cdot \alpha^{\prime \prime} .
\end{aligned}
$$

So $\alpha^{\prime \prime}$ is alums pep to α^{\prime}. All $\alpha^{\prime} \mathrm{cm}$ do is rotate.

Space tue pretors

Analogaroly, \quad-velocity: $\frac{d \alpha}{d \tau}=V$
4-accelentio: $\frac{d^{2} \alpha}{d \tau^{2}}$

$$
\begin{aligned}
& V(t)=c \frac{\alpha^{\prime}}{\left|\alpha^{\prime}\right|} \quad \frac{d r}{d t}=\frac{1}{c}\left|\alpha^{\prime}\right| \\
& \frac{d V}{d \tau}=\frac{d V}{d t} \cdot \frac{\frac{d t}{d \tau}}{\gamma(|V|)}=\frac{d V}{\underbrace{\frac{d}{d t}}_{T_{\text {rpcacally }}} \cdot \frac{c}{\left|\alpha^{\prime}\right|}} \\
& \alpha=\left[\begin{array}{l}
c t \\
R_{\cos }(\omega t) \\
R_{\sin }(\operatorname{lot})
\end{array}\right] \quad \begin{aligned}
\left|\alpha^{\prime}\right| & =\sqrt{c^{2}-R_{\omega}^{2}} \\
& =c \sqrt{1-\left(\frac{R}{c}\right)^{2}}
\end{aligned} \\
& V=\frac{1}{\sqrt{1-\left(e_{2}\right)}}\left[\begin{array}{c}
c \\
R_{N} \sin \\
R_{\omega} \cos
\end{array}\right]
\end{aligned}
$$

$$
=\frac{1}{\left(1-\left(\frac{R_{v}}{c}\right)^{2}\right)}\left[\begin{array}{c}
0 \\
-\omega^{2} R \cos (\omega t) \\
-\omega^{2} R \sin (\omega t)
\end{array}\right]
$$

\uparrow
usurd accolentiun Neutorian
relativistie correction fuctor.
Is infinite if $R_{\omega}=c$?
e.g. $\alpha(t)=\left[\begin{array}{c}c t \\ \chi(t)\end{array}\right]$

$$
\begin{aligned}
& \frac{d \alpha}{d \tau}=\gamma(v)\left[\begin{array}{l}
c \\
v
\end{array}\right] \quad \frac{d \tau}{d t}=\frac{1}{c} \sqrt{c^{2}-|v|^{2}} \\
& =\gamma^{-1} \\
& \frac{d^{2} \alpha}{d \tau^{2}}=\frac{d t}{d \tau} \frac{d}{d t}\left[\gamma\left[\begin{array}{l}
c \\
v
\end{array}\right]\right] \\
& d t=\gamma d \tau \\
& =\gamma\left[\gamma^{\prime}\left[\begin{array}{l}
c \\
v
\end{array}\right]+\gamma\left[\begin{array}{l}
0 \\
v^{\prime}
\end{array}\right]\right] \\
& =\left(\gamma \gamma^{\prime}\right)\left[\begin{array}{l}
c \\
v
\end{array}\right]+\gamma^{2}\left[\begin{array}{l}
0 \\
v^{\prime}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d t} \frac{1}{\sqrt{1-\left(-\frac{v}{2}\right)^{2}}} & =\frac{-1}{2} \frac{1}{\left(1-\frac{v}{c}\right)^{3 / 2}}(-2) \frac{v}{c} \frac{v^{\prime}}{c} \\
& =\gamma^{3} \frac{v}{c^{2}} \frac{d v}{d t} \\
\gamma \gamma^{\prime} & =\gamma^{4} \frac{|v|}{c^{2}} \frac{d}{d t}|v|
\end{aligned}
$$

