Last class: introduced the notion of a prometerzed curve in space time.

Suppose we have a particle (observes planet, etc.) elation
and you wish to describe its motion in yea inertial cord systar.
At each time t you knew the location $\vec{x}(t)$ of the particle. From this you obtain a cana

$$
\alpha(t)=\left[\begin{array}{c}
t \\
\vec{x}(t)
\end{array}\right]
$$

Some other obsever could do the sue thing

$$
\hat{\alpha}(\hat{t})=\left[\begin{array}{c}
\hat{t} \\
\overrightarrow{\hat{x}}(\hat{t})
\end{array}\right] .
$$

And you could covert:

$$
\begin{aligned}
& {\left[\begin{array}{c}
c t \\
x
\end{array}\right]=\gamma\left[\begin{array}{ll}
c & s \\
s & c
\end{array}\right]\left[\begin{array}{l}
c \hat{t} \\
\hat{x} \mid \hat{t})
\end{array}\right]} \\
& c t=\gamma(C c \hat{t}+S \hat{x} \mid \hat{t}) \\
& x=\gamma(S c \hat{t}+C \hat{x}(\hat{z}))
\end{aligned}
$$

Ie $\quad \alpha(t)=\left[\begin{array}{c}t \\ x(t)\end{array}\right]$

$$
\beta(\hat{t})=\left[\begin{array}{l}
\gamma C \hat{t}+\gamma / c S_{\hat{x}}(\hat{t}) \\
\gamma S_{c} \hat{t}+C \hat{x}(\hat{t})
\end{array}\right]
$$

are two equally valid descriptions of the same particle in your coordinate system.
The orly thing that is diffeat is the promoter t us \hat{z} used to describe the cane

So well be agnostic

$$
\begin{aligned}
& \alpha(s)=\left[\begin{array}{c}
t(s) \\
\vec{x}(s)
\end{array}\right] \\
& \alpha^{\prime}(s)=\left[\begin{array}{c}
t^{\prime} \\
\vec{x}^{\prime}
\end{array}\right] \quad \text { Your absened velocity?: } v=\frac{d \vec{x} / d_{s}}{d t / d_{s}} \\
& C_{\alpha}(s)=\left[\begin{array}{c}
c t(s) \\
\vec{x}(s)
\end{array}\right]
\end{aligned}
$$

in mother systan $\hat{\alpha}=C^{-1} L C_{\alpha}+z$

$$
\begin{aligned}
\hat{\alpha}^{\prime} & =C^{-1} L C_{\alpha^{\prime}}^{\prime} \\
C_{\hat{\alpha}^{\prime}} & =L C_{\alpha^{\prime}}
\end{aligned}
$$

So $C \alpha^{\prime}$ transforms as a vector. For this racon, we will henceforth write dor coves α in geometric coordinates $\quad \alpha(s)=\left[\begin{array}{l}c t(s) \\ \vec{x}(s)\end{array}\right]$ iusterd of above.
I.e. $\alpha^{\prime}(s)$ is a vector for exch s. Causal if obsend uclocit $\leq C$.

$$
\begin{aligned}
\frac{|d \vec{x}| \cdot d s \mid}{\left|d t / d_{0}\right|} \leqslant c & \Leftrightarrow|d \vec{x} \cdot d|^{2} \leqslant o^{2} \frac{d t}{d_{s^{2}}} \\
& \Leftrightarrow c^{(}\left(\frac{d t}{d s}\right)^{2}-\left|\frac{d \vec{x}}{d s}\right|^{2} \geqslant 0
\end{aligned}
$$

How much tine elapses for the partible?
$9 B$ If non accelectiry,

$$
X=C(B-A)=\left[\begin{array}{l}
c \Delta t \\
s_{x}
\end{array}\right]
$$

$$
\tau=\frac{1}{c} \sqrt{x^{\top} G x}=\frac{1}{c} \sqrt{g(x, x)}
$$

square root of internal, coveted to time.

$$
\begin{aligned}
& \Delta \tau_{1}=\frac{1}{c} \sqrt{g\left(x_{1}, x_{1}\right)} \\
& \Delta \tau_{2}=\frac{1}{c} \sqrt{g\left(x_{2}, x_{2}\right)}
\end{aligned} \quad x_{i}=C\left(A_{i}-\lambda_{i n}\right)
$$

$$
\Delta \tau=\Delta \tau_{1}+\Delta \tau_{2}
$$

For finitely may:

$E_{k}=\alpha\left(S_{k}\right)$ (alvendy in geaneinic coonds)

$$
\begin{aligned}
& X_{k}=E_{k}-E_{k-1} \\
& \Delta \tau=\sum_{k=1}^{\hat{}} \frac{1}{c} \sqrt{g\left(X_{k}, X_{k}\right)}
\end{aligned}
$$

But, if the steps are really small

$$
\begin{aligned}
E_{k+1}=\alpha\left(s_{k+1}\right) & \approx \alpha\left(s_{k}\right)+\alpha^{\prime}\left(s_{k}\right) \underbrace{\left(s_{k+1}-s_{k}\right)} \\
& =E_{k}+\alpha_{k+1}\left(s_{k}\right) \Delta s_{k+1} \\
X_{k+1} & \approx \alpha^{\prime}\left(s_{k}\right) \Delta s_{k+1} \\
\frac{1}{c} \sqrt{g\left(x_{k}, x_{k}\right)} & \approx \frac{1}{c} \sqrt{g\left(\alpha^{\prime} / s_{k+1}, \alpha^{\prime}\left(s_{k-1}\right)\right.} \Delta s_{k}
\end{aligned}
$$

In the lamer

$$
\Delta \tau=\int_{s_{0}}^{s_{1}} \frac{1}{c} \sqrt{g\left(\alpha^{\prime}(s), \alpha^{\prime}(s)\right)} d s
$$

Proper time along the carve.

If we set $\tau=0$ at so

$$
\tau=\int_{s_{0}}^{s} \frac{1}{c} \sqrt{g\left(\alpha^{\prime}(\sigma), \alpha^{\prime}(\sigma)\right.} d \sigma
$$

$$
\frac{d \tau}{d_{s}}=\frac{1}{c} \sqrt{g\left(\alpha^{\prime}(\sigma), \alpha^{\prime}(\sigma)\right.}
$$

\uparrow
conversion fuctor from parmetors to propertime.

