Now 3 space diversions.
Weill assume coordinate trusformations are atfue (so non-acceleation is preserved).

We'll assume that if ore observer says E ad E lie on the path of a son accelenting particle traveling at the speed of light, all olosewers say so.

$$
\begin{aligned}
& E=\left(t_{\Delta} x_{0}\right) \rightarrow \quad \\
& F=\left(t_{1}, x_{1}\right)
\end{aligned} \rightarrow \begin{aligned}
& |c \Delta t|=|\Delta x| \\
& \left|c \Delta t^{\prime}\right|=\left|\Delta x^{\prime}\right|
\end{aligned}
$$

Let us den with liner case first

$$
\begin{gathered}
\binom{t^{\prime}}{x^{\prime}}= \\
A\binom{t}{x} \\
\downarrow \\
C^{-1} L C \\
C=\left[\begin{array}{l}
c_{1} \\
t_{1}
\end{array}\right]
\end{gathered}
$$

F lies on path of a ploton frum O :

$$
\begin{aligned}
& c|\cdot \epsilon|=|x| \\
& c^{2}(\epsilon)^{2}=|x|^{2} \\
& (C F)^{\top} G C F=0 \quad G=\left[\begin{array}{l}
1 \\
-1 \\
-1 \\
-1
\end{array}\right]
\end{aligned}
$$

We requre

$$
(C A F)^{\top} G C A F=0
$$

vaver $(C F)^{\top} G C F=0$

$$
\left.A=e^{-1} \hbar C \quad(C F)^{\top} L^{\top} G L C F=0 \quad \begin{array}{r}
\text { wherer }
\end{array}\right\}
$$

I.e. $\quad X^{\top} L^{\top} G L X=0$ whener

$$
x^{\top} G X=0 \quad(x=C F)
$$

$$
\begin{aligned}
& \text { e.g: } X=\left[\begin{array}{l}
1 \\
U
\end{array}\right] \quad|U|^{2}=1 \\
& L^{\top} G L=\left[\begin{array}{ll}
\alpha & a \\
a & S
\end{array}\right] \text { for sume } \alpha, a, S \quad \delta^{\top}, S \\
& \text { (My?) } \\
& X^{\top} L^{\top} G L X=\alpha+2 a \cdot U+U^{\top} \delta U \\
& =U^{\top}(\alpha I) U+2 a \cdot U+U^{\top} S U \\
& =U^{\top}[\alpha I+S] U+2 a U \\
& \text { So } \quad U^{\top}[\alpha I+S] U+2 a \cdot U=0 \text { if }|U|=1 \\
& U \rightarrow-U \\
& U^{\top}[\alpha I+s] U-2 \operatorname{a\cdot U}=0 \text { als } 0
\end{aligned}
$$

So $a \cdot U=0$ for all unituetos U,
and thantare all vectors. So $a \cdot a=0$ and $a=0$.

Also:

$$
U T[\alpha I+5] U=0 \text { for all vi nt vectors } U \text {. }
$$

But an $W=\lambda U, U$ a unit vector, so

$$
W^{\top}[\alpha I+S] W=\lambda^{2} U^{\top}[\alpha I+5] U=0
$$

for all vectors $W \in \mathbb{R}^{3}$.

$$
B(W, Y)=W^{\top}[\alpha I+5] Y \text { is billinen and }
$$

agnes an diesganal with 0 . So $W^{\top}[\alpha I+s] i=0$ for all vectors W, Y. So $\alpha I+S=0$ (use eire e_{j}).

So $S=-\alpha I$

We caclude: $\quad a=0 \quad(a \cdot a=0!)$

$$
S+\alpha I=0, \quad S=-\alpha I \quad \text { (polarizatos) }
$$

$$
L^{\top} G L=\alpha\left[\begin{array}{l}
1 \\
-I
\end{array}\right]=\alpha G .
$$

Now

$$
\begin{aligned}
& L=\left[\begin{array}{ll}
\gamma & - \\
\mid & *
\end{array}\right] \\
& L\left[\begin{array}{c}
c t \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
\gamma \\
1
\end{array}\right] c t \\
& c t^{\prime}=\gamma c t
\end{aligned}
$$

Tencodes tive dilation.
Relatuity hypothesis: time dilation betwea the too coordiuate syoters is the sune.
$L^{-1}=\left[\begin{array}{ll}\gamma & \ldots \\ 1 & *\end{array}\right]$ also, for oher stuff.

$$
\begin{aligned}
& L^{\top} G L=\alpha G \Rightarrow \\
& L^{\top}=\alpha G L^{-1} G \quad \uparrow_{\text {upper left enty is } \alpha \gamma} \\
& \uparrow_{\text {uper left }} \\
& \text { entry is } \gamma
\end{aligned}
$$

So $\alpha=1$.
We asmod:

1) Linear
2) path of photas preserved
3) relativity of towe dilation

$$
\left[\begin{array}{l}
t^{\prime} \\
x^{\prime}
\end{array}\right]=A\left[\begin{array}{l}
t \\
x
\end{array}\right] \quad A=C^{-1} L C \quad L^{\top} G L=G
$$ These ae the (ratural) Lorentz fuasfomations. physicul Locentz trusis.

$$
O(1,3) \text { : } \operatorname{suh}_{\text {gup }} \text { of } G L(4, \mathbb{R}) \quad L^{\top} G L=G .
$$

Exarise:
The affere trustomutiaus me

$$
\begin{array}{rl}
C^{-1} L C+z & Z \in \mathbb{R}^{4} \\
& L \in O(1,3)
\end{array}
$$

As in $2 \cdot d$ case, intemal:

$$
\begin{gathered}
X-C(F-E) \\
\operatorname{lnt}(E, F)=X^{\top} G X \quad(c \Delta t)^{2}-\left(\Delta_{x}\right)^{2}-\left(\Delta_{y}\right)^{2}-(\Delta z)^{2}
\end{gathered}
$$

plysical Loentz tromofonations presence interad an physcal cocends
natenal reatural coends

Def: The fate light can of orin is set of evans $E=\left[\begin{array}{l}7 \\ x_{1} \text { with } \\ I_{1} t(O, E)=0 \text { and } t>0 \text {. }\end{array}\right.$

Def: $A^{4,4}$ matrix L is a Lorentz transf, R

$$
L^{+} G L=G .
$$

a) It is onthochrous if in addition it sends the future light cane of the incan to itself.
b) It is proper if $\operatorname{det}(L)=1$.
c) It is restricted if both proper orthochows.
a) $\mathrm{O}^{+}(1,3)$
b) $S O(1,3)$
c) $\mathrm{SO}^{+}(1,3)$

Lama: Let $L \in O(1,3)$. If L is onthochrouns than

$$
L_{0}^{0}>0 . \quad\left(L_{00}\right. \text {; Ill explain why }
$$ you book does this later)

Pf: $L\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right)=L\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+L\left[\begin{array}{c}-1 \\ -1 \\ j\end{array}\right]$

$$
=\left[\begin{array}{c}
c t_{0} \\
*
\end{array}\right]+\left[\begin{array}{c}
c t_{1} \\
*
\end{array}\right]
$$

with $t_{0}, t_{1}>0$. But $L\left(\begin{array}{l}2 \\ \vdots \\ 0\end{array}\right)=\binom{2 L_{0}^{6}}{*}$.
So $2 L_{0}^{0}=c\left(t_{0}+t_{1}\right)>0$.

In fact, the cancose is the; weill wait a bit for this. 'But in tho mean time, oc. $\Leftrightarrow L^{\circ}>0$ is fine. Mewing of L_{0}^{0} :

$$
L\left[\begin{array}{l}
1 \\
0 \\
i
\end{array}\right]=\left[\begin{array}{l}
L_{0}^{0} \\
L_{0} \\
L_{3} \\
1
\end{array}\right]
$$

$$
\uparrow \prod_{\text {quine cord of sage of }}\left[\begin{array}{l}
1 \\
0 \\
i
\end{array}\right] \text {. }
$$

e. g.

$$
\mathscr{R}_{\psi}=\left[\begin{array}{ccc}
c & 5 & 0 \\
\delta & c & \\
0 & I
\end{array}\right]
$$

(boost in x-t plone)

$$
C>0, \quad \operatorname{det} \text { is }\left(c^{2}-s^{2}\right) \cdot 1^{2}=1
$$

e.g. $\left[\begin{array}{cc}1 & 0 \\ 0 & f 1\end{array}\right] \quad t \in S 0(3)$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 0 \\
6 & H^{\top}
\end{array}\right]\left[\begin{array}{cc}
+1 & 0 \\
0 & -工
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & H
\end{array}\right]} \\
& {\left[\begin{array}{cc}
1 & 0 \\
0 & H
\end{array}\right]\left[\begin{array}{cc}
+1 & 0 \\
0 & -H
\end{array}\right]=\left[\begin{array}{cc}
1 & - \\
0 & -I
\end{array}\right]}
\end{aligned}
$$

det $13 \quad \operatorname{lodet}(H)=1$

$$
1>0
$$

e. 9.
v any unit vector in \mathbb{R}^{3}
K an elenat of $S O(3), K e_{1}=v$

$$
[v|\cdots|]
$$

$$
L=\left[\begin{array}{ll}
1 & 0 \\
0 & k
\end{array}\right] \mathcal{L}_{\psi}\left[\begin{array}{ll}
1 & 0 \\
0 & k^{\top}
\end{array}\right]
$$

exercise: if $w \in \mathbb{R}^{3}, w \cdot v=0$
$L\left[\begin{array}{l}0 \\ w\end{array}\right]=0$. As for u, this is a boost in the

More serially:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & H
\end{array}\right) \mathscr{L}_{\psi}\left[\begin{array}{ll}
1 & 0 \\
0 & k^{\top}
\end{array}\right] \quad H, K \in S O(z)
$$

Exerise (rext Hw?)

$$
L \in{S O^{+}(1,3)}^{L} \Leftrightarrow\left[=\left[\begin{array}{lll}
1 & \\
& H
\end{array}\right] \mathcal{A}\left[\begin{array}{ll}
1 & \\
& k^{\top}
\end{array}\right]\right.
$$

for sone $\psi_{k} \in \mathbb{R}, \quad H \in B O(3), \quad K \in S O(3)$.
They are compositions of sputiol rotatious and boosto.
(4)-vectors

