$$
\begin{aligned}
\frac{d x}{d t}=\frac{d x}{d t^{\prime}} \cdot \frac{d t}{d t}=\frac{[S+c(w / c)] c}{[c+S(w / c)]} & =\frac{S / c+(w) c}{1+\frac{s}{c} \frac{w}{c}} \\
& =\frac{\frac{v}{c}+\frac{w}{c} \cdot c}{1+\frac{v}{c} \frac{w}{c}} \\
& =\frac{v+\omega v}{1+\frac{v w}{c} \frac{w}{c}}
\end{aligned}
$$

(Veloaity alditin formuly again)

$$
\begin{array}{ll}
E & F=\left(t_{2}, x_{2}\right) \\
E=\left(t_{1}, x_{1}\right)
\end{array}
$$

T evart T coordintes of the event in sure wentel fare.
Inteval: $\quad c^{2}\left(t_{2}-t_{1}\right)^{2}-\left(x_{2}-x_{1}\right)^{2}=I(E, F)$

$$
X=\binom{\left(t_{2}-t_{1}\right)}{x_{2}-x_{1}}=C(F-F)
$$

$E=(t, x)$ physical coordinates
(ct,x) natural coordinates (alleaties units

$$
\left[\begin{array}{l}
c t \\
x
\end{array}\right]=\left[\begin{array}{ll}
c & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{l}
t \\
x
\end{array}\right] C
$$

of least)

Given two points

$$
\left(t_{0}, x_{0}\right)=E
$$

I cu construct a quantity associated with the pair called the uterunl sepantions then

1) $X=C F-C E=C(F-E)$
(displacement from E to F in natal units
2) $G=\left[\begin{array}{cc}+1 & 0 \\ 0 & -1\end{array}\right]$

$$
\rightarrow c m b e t,-, 0 \text {. }
$$

$\operatorname{Int}(E, F)=X^{\top} G X$
If $\quad F-E=\left[\begin{array}{c}\Delta t \\ \Delta x\end{array}\right], \quad I_{n} t(F, X)=(c \Delta t)^{2}-(\Delta x)^{2}$ lensthits of $_{\text {un }}$

Given mother obsever θ^{\prime}, what Joas θ^{\prime} assin es the inteval?

$$
\begin{aligned}
& {\left[\begin{array}{l}
c t^{\prime} \\
x^{\prime}
\end{array}\right]=L_{-v}\left[\begin{array}{c}
c t \\
x
\end{array}\right]} \\
& C\left[\begin{array}{l}
t^{\prime} \\
x^{\prime}
\end{array}\right]=L_{-v} C\left[\begin{array}{l}
t \\
x
\end{array}\right] \\
& {\left[\begin{array}{l}
t^{\prime} \\
x^{\prime}
\end{array}\right]=\underbrace{C^{-1} L_{-v} C}_{1}\left[\begin{array}{l}
t \\
x
\end{array}\right]} \\
& \text { L-v: (natuoul) Lorentz tuastonat, } \\
& \text { physural Loreste trasfonefors. }
\end{aligned}
$$

$$
\begin{aligned}
C E^{\prime} & =L_{-v} C E \\
X^{\prime}=C\left(E^{\prime}-F^{\prime}\right) & =L_{-v} C(E-F) \\
& =L_{-v} X \\
\left(X^{\prime}\right)^{\top} G X & =X^{\top} L_{-v}^{\top} G L_{-v} X
\end{aligned}
$$

$$
\begin{aligned}
& \left(X^{\prime}\right)^{\top} G X=X^{\top} L_{-v}^{\top} G L_{i v j} X \\
\leftrightarrow \quad\left(\begin{array}{cc}
c & -s \\
-s & c
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
c & -s \\
-s & c
\end{array}\right) & =\left(\begin{array}{cc}
c & -s \\
-s c & c
\end{array}\right)\binom{-s-s}{s-c} \\
& =\left(\begin{array}{cc}
c^{2}-s^{2} & 0 \\
0 & -c^{2}+s^{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

The interval between two points, in any of thee coordinate systans is

$$
(c \Delta t)^{2}-\left(\Delta_{x}\right)^{2}
$$

$$
f(z)=C^{-1} L e_{z}+T
$$

Of couse, it is presuad by tmolutions as well)
This is the fandmented quant-l of 2-d spucetme that repluess the sotion of distuce in Eveliden geonedx

Let us suppose E a orisus.

$$
I(0, F)=0 \text { when }|\Delta x|=c|\perp t|
$$

 Texucthy aluy polks of vobocid <0. c. "light cone"!

Where ae all prints with uttered $=1$ from $E=0$?
$1=c t$
Here me some. Start with $\binom{{ }^{t} t}{x^{\prime}}\binom{1}{0}=X$. Now sand thrush \mathcal{d}_{ϕ}.

$$
\left[\begin{array}{ll}
c & s \\
s & c
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
c \\
s
\end{array}\right]
$$

Recall: $C^{2}-S^{2}=1$

$$
(c t)^{2}-x^{2}=1
$$

We missed some: $\quad\binom{c t}{x}=\binom{-1}{0}$ aldo hus intemal I

The transformations we are working with only take the upper branch to the upper bruch, etc.

What about $-1 ? \quad$ Stactwith $\left[\begin{array}{l}0 \\ 1\end{array}\right]$
Now sad through \mathcal{V}_{ϕ} to got $\left[\begin{array}{l}s \\ c\end{array}\right] \quad s^{2}-c^{2}=-1$
 $C>0$ so always stays on wight side.

Similarly for left. had brach.

So whit does the interval measure?

$$
c t^{2}-x^{2}=x^{2}>0, \quad t>0
$$

Pick $\psi, \quad \tanh (\psi)=\frac{x}{c t}$
Exarise: $\quad \mathcal{L}_{4}\binom{c t}{x}=\binom{k}{0}$

- $\left(\frac{x}{c}, 0\right)$ In a frame where O and E hue the sue space coordinate, K / C is the time differed from \underline{O} to E

In any. the fine, the time difference is at lest thus bur: it will be $\frac{\gamma K}{c}$ [time dilation, the cappaion ft

Similar if $t<0$. length contraction]

We call "(this) the "paper time" separates Oud E

$$
\begin{aligned}
& (c t)^{2}-x^{2}=-x^{2}<0 \quad x>0 \\
& \quad \operatorname{tahh} \phi=\frac{c t}{x} \\
& \text { exercise: } \dot{\alpha}_{-\phi}\left[\begin{array}{l}
c t \\
x
\end{array}\right]=\left[\begin{array}{c}
0 \\
k
\end{array}\right]
\end{aligned}
$$

K is the distance between \underline{O} and E in a coordinate system in which O ant E are simul tan cars.

We call thus the properdistare between \mathcal{O} and E.

The full set of timstormations of \mathbb{R}^{2} that prescre the internal is known as the Posicaré group.
Those that preserve the origin are called the Locate group.

There are some weirdos:

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] \quad(\text { time reflection) } \\
& {\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
o t \\
x
\end{array}\right]=\left[\begin{array}{c}
-c t \\
x
\end{array}\right]} \\
& A=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad \text { space reflection. }
\end{aligned}
$$

We can vale these out via $\operatorname{def}(A)=1$.

$$
S O(1,1) .
$$

But this still allows $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right] \quad$ (space + the reflection)

$\mathrm{SO}^{+}(1,1)$ for taking futve to suture

Now 3 space diversions.
Weill assume coordinate transformations are affare (so non-acceleation is preserved).

We'll assume that if ore observer says E ad E lie on the path of a son accelenting particle troweling at the speed of light, all olosevers say so.

$$
\begin{aligned}
& E=\left(t_{0}, x_{0}\right) \rightarrow \quad|c \Delta t|=|\Delta x| \\
& F=\left(t_{1}, x_{1}\right)
\end{aligned} \rightarrow \quad
$$

Let us den with liner case first

$$
\begin{gathered}
\binom{t^{\prime}}{x^{\prime}}= \\
A\binom{t}{x} \\
\downarrow \\
C^{-1} L C \\
C=\left[\begin{array}{l}
c_{1} \\
t_{1}
\end{array}\right]
\end{gathered}
$$

F lies on path of a ploton frum O :

$$
\begin{aligned}
& c|\Delta t|=|x| \\
& c^{2}(\Delta t)^{2}=|x|^{2} \\
& (C F)^{\top} G C F=0 \quad G=\left[\begin{array}{l}
1 \\
-1 \\
-1
\end{array}\right]
\end{aligned}
$$

We requre
28: phys
30 arease
redo: san

$$
(C A F)^{\top} G C A F=0
$$

wherer $(C F)^{\top} G C F=0$

$$
\left.A=e^{-1} \hbar C \quad(C F)^{\top} L^{\top} G L C F=0 \quad \begin{array}{r}
\text { wherer }
\end{array}\right\}
$$

I.e. $\quad X^{\top} L^{\top} G L X=0$ whener

$$
X^{\top} G X=0
$$

Full spacetime:

$$
G=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { spacetime metric. }
$$

TAtami between $\left(t_{1}, x_{y}, y_{1}, z_{1}\right)=E_{1}$

$$
\begin{gathered}
\left(t_{1}, x_{2}, y_{2}, z_{2}\right)=E_{2} \\
{\left[C\left(t_{2}-t_{1}\right)\right]^{2}-\left(x_{2}-x_{1}\right)^{2}-\left(y_{2}-y_{1}\right)^{2}-\left(z_{2}-z_{1}\right)^{2}} \\
\left(E_{2}-E_{1}\right)^{\top} C^{\top} G \underbrace{C\left(E_{2}-E_{1}\right)}_{X} \\
X^{\top} G X
\end{gathered}
$$

A Lorentz transformation is a liner mop $P L$

