Last class:
2-d Lorentz transforms
O^{\prime} nouns with velocity v relative to 0 , intersect at

$$
t=0 \quad x=0 \quad\left(t^{\prime}=0, x^{\prime}=2\right)
$$

$$
\binom{c t^{\prime}}{x^{\prime}}=\gamma\left(\begin{array}{cc}
1 & -\frac{v}{c} \\
-\frac{v}{c} & 1
\end{array}\right)\binom{c t}{x}
$$

passive (relabolis)

$$
\left.\begin{array}{l}
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
\cos (-\theta) & -\sin (-\theta) \\
\sin (-\theta) & \cos \theta
\end{array}\right)\binom{x}{y} \\
\left(\text { e.g. } y^{\prime}<0 \text { if } x>0 \quad y=0\right.
\end{array}\right)
$$

(active)
On the other hud, the rotation tint takes the wy axes to the x^{\prime}, y^{\prime} anis is

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y}
$$

I wut a sunilar pucture for Loventz trunsformations.
$L_{V}=Y\left(\begin{array}{cc}1 & \frac{v}{c} \\ \check{c} & 1\end{array}\right)=\left(\begin{array}{ll}a & b \\ b & a\end{array}\right) \quad\left(\begin{array}{c}\text { trastormation That placks } \\ 0 '\end{array}\right.$ O^{\prime} 's configuertion orto O^{\prime} 's)

$$
\begin{aligned}
a^{2}-b^{2} & =\gamma^{2}\left[1-\left(\frac{v}{c}\right)^{2}\right] \\
& =\frac{1}{1-\left(\frac{v}{c}\right)^{2}}\left(1-\left(\frac{y}{c}\right)^{2}\right)=1
\end{aligned}
$$

[thase mups are "aren" prosecving. Spucetine hus a notion of area or volume]
 hypetola.

But $a>0$ so just

Moron, you are funilior with $\cos ^{2} \theta+\sin ^{2} \theta=1$.
If $a^{2}+b^{2}=1$ then is a anise $\theta \subset[0,2 \pi]$ with $a=\cos \theta, b=\sin \theta$.

Recall the hyperbolic trig factions:

$$
\cosh z=\frac{e^{z}+e^{-z}}{2} \quad \sinh z=\frac{e^{z}-e^{-z}}{2}
$$

Exercise: $\cosh ^{2} z-\sinh ^{2} z=1$

In fact, of $a^{2}-b^{2}=1$ there is a unique $\psi \in \mathbb{R}$

$$
\begin{aligned}
& a=\cosh \psi \\
& b=\sinh \psi
\end{aligned}
$$

In fact: $\quad \frac{b}{a}=\tanh (\psi), \psi=\operatorname{arctanh}(b / a)$
So $\gamma=\cosh (\psi) \quad \psi$ rapidity.

Recall the argle sum formun

$$
\begin{aligned}
& e^{i \theta}=\cos \theta+i \sin \theta \\
& \left.\begin{array}{l}
e^{i\left(\theta_{1}+\theta_{2}\right)}=
\end{array}\right)=\cos \theta_{1}+\theta_{2}+i \sin \left(\theta_{1}+\theta_{2}\right) \\
& \begin{aligned}
\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}+i\right. & \left.\sin \theta_{2}\right) \\
& =\left[\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}\right] \\
& +i\left[\sin \theta_{1} \cos \theta_{2}+\sin \theta_{2} \cos \theta_{1}\right]
\end{aligned}
\end{aligned}
$$

Exercuse:

$$
\begin{aligned}
& \cosh \left(z_{1}+z_{2}\right)=\cosh \left(z_{1}\right) \cosh \left(z_{2}\right)+\sinh \left(z_{1}\right) \sinh \left(z_{2}\right) \\
& \sinh \left(z_{1}+z_{2}\right)=\sinh \left(z_{1}\right) \cosh \left(z_{2}\right)+\sinh \left(z_{2}\right) \cosh \left(z_{1}\right)
\end{aligned}
$$

(Dothis from the lefurtion).

$$
\begin{aligned}
\mathcal{L}_{\phi} & =\left(\begin{array}{cc}
\cosh \phi & \sinh \phi \\
\sinh \phi & \cosh \phi
\end{array}\right) \\
\mathcal{L}_{\phi_{2}} \mathcal{L}_{\phi_{1}} & =\left(\begin{array}{ll}
C_{2} & S_{2} \\
S_{2} & C_{2}
\end{array}\right)\left(\begin{array}{ll}
C_{1} & S_{1} \\
S_{1} & C_{1}
\end{array}\right) \\
& =\left(\begin{array}{ll}
C_{1} c_{2}+S_{1} S_{2} & c_{2} S_{1}+s_{2} c_{1} \\
C_{2} S_{1}+S_{2} c_{1} & c_{1} c_{2}+S_{1} S_{2}
\end{array}\right) \\
& =\left(\begin{array}{ll}
\cosh \left(\phi_{1}+\phi_{2}\right) & \sinh \left(\phi_{1}+\phi_{2}\right) \\
\sinh \left(\phi_{1}+\phi_{2}\right) & \cosh \left(\phi_{1}+\phi_{2}\right)
\end{array}\right) \\
& =\mathcal{Q}_{\phi_{1}+\phi_{2}}
\end{aligned}
$$

The Lorentz matrices are closed arden multi. Thany canton the $\cdot \mathcal{d}, \mathcal{L}_{0} \quad \mathcal{L}_{-p}=\mathcal{L}_{\phi}^{-1}$ by above.

So they form a group.
$\operatorname{SO}^{+}(1,1) \quad \underbrace{\text { prortly. }}_{\text {we'll see why sher orthochows }}$ Lorentz hars fomatioas)

Suppose $O^{\prime \prime}$ is trueles with velocity w relative to 0^{\prime}, if O^{\prime} is dnuelvs with velocity O ad all agiee on a commen orisin.
What is the trusformation from 0 to $0^{\prime \prime}$ coondinata?

$$
\begin{aligned}
& \psi_{1}=\operatorname{arctah}\left(\frac{-v}{c}\right) \\
& \psi_{2}=\operatorname{arctanh}\left(\frac{-v}{c}\right) \\
&\binom{t^{\prime \prime}}{x^{\prime \prime}}=\left(\begin{array}{ll}
c_{2} & s_{2} \\
s_{2} & c_{2}
\end{array}\right)\left(\begin{array}{ll}
c_{1} & s_{1} \\
s_{1} & c_{1}
\end{array}\right)\binom{t}{x} \\
&=\left(\begin{array}{ll}
c_{3} & s_{3} \\
s_{3} & c_{3}
\end{array}\right)\binom{t}{x} \quad \begin{array}{l}
c_{3}=\cosh \left(\psi_{1}+\psi_{2}\right) \\
s_{3}=\sinh \left(\psi_{1}+\psi_{2}\right)
\end{array}
\end{aligned}
$$

So $O^{\prime \prime}$ is mang wirit. O with velocity z

$$
\tanh \left(\psi_{1}+\psi_{2}\right)=\left(\frac{-z}{c}\right)
$$

$$
\begin{aligned}
-\frac{z}{c}=\tanh \left(\psi_{1}+\psi_{2}\right) & =\frac{\sin \left(x_{1}+\psi_{2}\right)}{\cosh \left(x_{1}+\psi_{2}\right)} \\
& =\frac{S_{1} c_{2}+s_{2} c_{1}}{c_{1} c_{2}+s_{1} s_{2}} \\
& =\frac{s_{1} / c_{1}+s_{2} k_{2}}{1+\frac{s_{1}}{c_{1}} \frac{s_{2}}{c_{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{S_{1}}{c_{1}}=\tanh \left(\psi_{1}\right)=\frac{-v}{c} \\
& \frac{S_{2}}{c_{2}}=\operatorname{tah}\left(x_{2}\right)=-\frac{w}{c}
\end{aligned}
$$

$\frac{z}{c}=\frac{\frac{v}{c}+\frac{w}{c}}{1+\left(\frac{k}{c}\right)\left(\frac{k}{c}\right)} \longleftarrow$ addian of velocite
exeruse: if $a, b \in(-1,1)$

$$
1+\frac{1}{1} \leq \frac{1}{2}+6 \quad(\cos)
$$

$$
\frac{a+b}{1+a b} \in(-1,1) \text { also. }
$$

Smiluly, suppose O^{\prime} is mans with velocity v v.r.t. 0
And it obsenos a paritcle trudus with volocityw. What velocity doos O absare?

$$
\begin{aligned}
&\binom{c t^{\prime}}{x^{\prime}}=\binom{c t^{\prime}}{w t^{\prime}+x_{0}^{\prime}} \quad \text { asseny at } x_{0}^{\prime} \text { when } t^{\prime}=0 \\
&=\binom{c t^{\prime}}{\left(\frac{w}{c}\right) c t^{\prime}+x_{0}^{\prime}} \\
&\binom{c t}{x}=\left(\begin{array}{ll}
c & s \\
s & c
\end{array}\right)\binom{c t}{\left(\frac{w}{c}\right) c t^{\prime}+x_{0}^{\prime}}
\end{aligned}
$$

What mattes:

$$
\begin{aligned}
&\left(\begin{array}{cc}
c & S \\
S & C
\end{array}\right)\binom{c t^{\prime}}{\frac{w}{c} c t^{\prime}}= {\left[C+S\left(\frac{w}{c}\right)\right] c t^{\prime} } \\
& {\left[S+C\left(\frac{w}{c}\right)\right] c t^{\prime} } \\
&\left(\begin{array}{cc}
c & S \\
S & c
\end{array}\right) L_{w}\binom{1}{0} c t^{\prime}=L_{v} L_{w}\binom{1}{0} c t^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d x}{d t}=\frac{d x}{d t^{\prime}} \cdot \frac{d t^{\prime}}{d t}=\frac{[S+c(w / c)] c}{[c+S(w / c)]} & =\frac{S / c+(w) c}{1+\frac{s}{c} w} \\
& =\frac{\frac{v}{c}+\frac{w}{c} \cdot c}{1+\frac{v}{c} \frac{w}{c}} \\
& =\frac{v+w v}{1+\frac{v w}{c} \frac{w}{c}}
\end{aligned}
$$

(Veloaity alditin formuly again)

$$
\sum_{E=\left(t_{1}, x_{1}\right)}^{F=\left(t_{2}, y_{2}\right)}
$$

Interal: $\quad c^{2}\left(t_{2}-t_{1}\right)^{2}-\left(x_{2}-x_{1}\right)^{2}=I(E, F)$

$$
X=\binom{\left(t_{2}-t_{1}\right)}{x_{2}-x_{1}}=C(F-F)
$$

Interval: $\quad X_{G}^{\top} \underbrace{}_{\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)} X$
Coordinates for $O^{\prime} \quad\binom{\left(t t^{\prime}\right.}{x_{1}^{\prime}}=L_{-v}\binom{c t}{x}$

$$
\begin{gathered}
X^{\prime}=L_{-v} X \\
\left(X^{\prime}\right)^{\top} G X=X^{\top} L_{-v}^{\top} G L_{-v j} X \\
\rightarrow\left(\begin{array}{cc}
c & -s \\
-s & c
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
c & -s \\
-s & c
\end{array}\right)=\left(\begin{array}{ccc}
c & -s \\
-s & c
\end{array}\right)\binom{-s-c}{s-c} \\
=\left(\begin{array}{ccc}
c^{2}-s^{2} & 0 \\
0 & -c^{2}+s^{2}
\end{array}\right) \\
=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
=X^{\top} G X .
\end{gathered}
$$

The interval between two points, in any of thee coordinate systang is

$$
(c \Delta t)^{2}-\left(\Delta_{x}\right)^{2}
$$

This is the fandmental quatid of 2-d spucetine that repluers the rohion of distuce in Eveliden geonedx

Let us suppose E i origas.

$$
I(0, F)=0 \text { when }|\Delta x|=c|\Delta t|
$$

 Texacty alag pulks of uobacil c. "light cane".

Where ae all points with neral $=1$?
$1=c t$
Here me some. Start with $\binom{1}{0}$. Now sand thanh $\mathcal{1}_{\phi}$.

$$
\left[\begin{array}{ll}
c & s \\
s & c
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
c \\
s
\end{array}\right]
$$

Recall: $C^{2}-S^{2}=1$

$$
(c t)^{2}-x^{2}=1
$$

We missed some: $\quad\binom{c t}{x}=\binom{-1}{0}$ aldo hus intemal I

The transformations we are working with only take the upper brno to the upper bruch, etc.

What about $-1 ? \quad$ Stactwith $\left[\begin{array}{l}0 \\ 1\end{array}\right]$
Now send thrush \mathcal{V}_{ϕ} to got $\left[\begin{array}{l}s \\ c\end{array}\right] \quad s^{2}-c^{2}=-1$

$C>0$ so always stays on wish side.

Similarly for left.had brach.

