1. The conversion formula $E=m c^{2}$ for rest mass allows one to specify mass as energy. In particle physics, a standard measure of energy is a "gigaelectronvolt". Recall that the volt is the unit of electric potential: the energy required to move a coulomb of charge from a point with voltage V_{1} to a point with voltage V_{2} is $V_{2}-V_{1}$. An electron volt is the energy in Joules required to move an electron accross a single volt of potential, and a gigaelectronvolt (GeV) is the energy needed to move 10^{9} electrons over a volt of potential.
a) Recalling that the charge of an electron is 1.6×10^{-19} coulombs, show that a mass of 1 GeV is equivalent to $1.8 \times 10^{-27} \mathrm{~kg}$.
b) A muon has a mass of 0.106 GeV and a rest frame half life of 2.19×10^{-6} seconds. It is moving in a circular particle accelerator, 1 km in diameter, with energy 1000 GeV . How far around the circle to you expect it will travel?
2. When we first introduced the equivalence principle, we observed that it would predict a change in wavelength of a photon travelling up a building of height z as

$$
\begin{equation*}
\frac{\Delta \lambda}{\lambda}=-a \frac{z}{c^{2}} \tag{1}
\end{equation*}
$$

where a is gravitational acceleration at the surface of the earth.
In class, we saw that the formula for gravitational redshift in Schwarzschild is given by

$$
\begin{equation*}
\frac{\omega_{2}}{\omega_{1}}=\sqrt{\frac{1-\frac{2 G M}{c^{2} r_{1}}}{1-\frac{2 G M}{c^{2} r_{2}}}} . \tag{2}
\end{equation*}
$$

Use equation (1) to derive equation (2).
3. The rules for computing Cristoffel symbols, parallel transport, covariant derivatives, and so forth work equally well for Riemannian metrics (i.e. metrics $g_{a b}$ with signature $(+,+, \ldots,+)$) and in any dimension. Consider the Riemannian metric $d \phi^{2}+\sin ^{2} \phi d \theta^{2}$, which is the metric for the sphere in polar coordinates. Here, $\phi \in(0, \pi)$ and $\theta \in(-\pi, \pi)$.

1. Show that curves of constant θ are geodesics, and that the only line of constant ϕ that is a geodesic is the curve $\phi=0$.
2. In this coordinate system, take the vector $X=[1,0]$ and parallel transport it around a line of constant ϕ. What is the resulting vector? Your answer should depend on ϕ.

4. GR: 5.7

5. Consider a metric of the form

$$
\begin{equation*}
d s^{2}=d t^{2}-t^{2 a_{1}} d x_{1}^{2}-t^{2 a_{2}} d x_{2}^{2}-t^{2 a_{3}} d x_{3}^{2} \tag{3}
\end{equation*}
$$

Find necessary and sufficient conditions on the numbers a_{1}, a_{2} and a_{3} such that the metric is a solution of the vacuum Einstein equations.
6. Consider Einstein's vaccum equation with a cosmological constant Λ :

$$
G_{a b}=-\Lambda g_{a b} .
$$

Find the analog of the Schwarzschild solution for $\Lambda \neq 0$. The equation of motion for geodesics can be written in the form $p^{2}=f(u)$ as at the bottom of page 112 . What is $f(u)$ in this case?
7. GR 8.4
8. The equation

$$
\begin{equation*}
u_{t t}-c^{2} \Delta u+m^{2} u=0 \tag{4}
\end{equation*}
$$

with the constant $m>0$ is known as the Klein-Gordon equation. Find an energy for it and show that the causality principle holds for this equation as well.

