- **1.** GR 1.1
- **2.** GR 1.2
- **3.** Suppose in *x* coordinates a tensor $T^a_{\ b}$ has components equal to $\delta^a_{\ b}$. Write down in as simple a form you can the components in a different coordinate system \hat{x} . Then repeat this exercise if $T_{ab} = \delta_{ab}$ in *x* coordinates.
- **4.** GR 4.4 Note: The notation $dt^2 dr^2 \sin^2(r)(d\theta^2) + \sin^2\theta d\phi^2$ with $x^0 = 1$, $x^1 = r$, $x^2 = \theta$ and $x^3 = \phi$ is shorthand for the metric g_{ab} in these coordinates with

$$[g_{ab}] = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -\sin^2 r & 0 \\ 0 & 0 & 0 & -\sin^2 r \sin^2 \theta \end{pmatrix}$$

Ignore the suggestion about Lagrange's equations. Rather, compute the Christoffel symbols and write down the geodesic equations directly.