1. GR 1.1
2. GR 1.2
3. Suppose in x coordinates a tensor $T^{a}{ }_{b}$ has components equal to $\delta^{a}{ }_{b}$. Write down in as simple a form you can the components in a different coordinate system \hat{x}. Then repeat this exercise if $T_{a b}=\delta_{a b}$ in x coordinates.
4. GR 4.4 Note: The notation $d t^{2}-d r^{2}-\sin ^{2}(r)\left(d \theta^{2}\right)+\sin ^{2} \theta d \phi^{2}$ with $x^{0}=1, x^{1}=r, x^{2}=\theta$ and $x^{3}=\phi$ is shorthand for the metric $g_{a b}$ in these coordinates with

$$
\left[g_{a b}\right]=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -\sin ^{2} r & 0 \\
0 & 0 & 0 & -\sin ^{2} r \sin ^{2} \theta
\end{array}\right)
$$

Ignore the suggestion about Lagrange's equations. Rather, compute the Christoffel symbols and write down the geodesic equations directly.

