1. Suppose a particle travels with a force law of the form

$$
\frac{d P}{d \tau}=A V
$$

where P is its 4-momentum, V is its 4 -velocity and A is a spacetime dependent matrix. Assuming that $g(P, P)$ does not depend on τ, show that

$$
A=G B
$$

where B is antisymmetric.
2. Let ω be a covector expressed in an inertial coordinate system. We define

$$
\begin{equation*}
(d \omega)_{i j}=\partial_{i} \omega_{j}-\partial_{j} \omega_{i} . \tag{1}
\end{equation*}
$$

a) Show that in a second inertial coordinate system $\hat{x}=L x+Y$,

$$
\begin{equation*}
L^{t} \widehat{d \omega} L=d \omega \tag{2}
\end{equation*}
$$

Here,

$$
\begin{equation*}
(\widehat{d \omega})_{i j}=\hat{\partial}_{i} \hat{\omega}_{j}-\hat{\partial}_{j} \hat{\omega}_{i} \tag{3}
\end{equation*}
$$

b) If f is a function, show $d(d f)=0$.
c) Let $K=\left(K_{1}, K_{2}, K_{3}\right)$ and $L=\left(L_{1}, L_{2}, L_{3}\right)$ be triples of real numbers. We define the matrix

$$
\mathcal{F}(K, L)=\left(\begin{array}{cccc}
0 & K_{1} & K_{2} & K_{3} \tag{4}\\
-K_{1} & 0 & L_{1} & -L_{2} \\
-K_{2} & -L_{1} & 0 & L_{3} \\
-K_{3} & L_{2} & -L_{2} & 0
\end{array}\right)
$$

If $\omega=\left(\omega_{0}, \vec{\omega}\right)$, show that

$$
\begin{equation*}
d \omega=\mathcal{F}\left(\partial_{0} \vec{\omega}-\nabla \omega^{0}, \nabla \times \vec{\omega}\right) \tag{5}
\end{equation*}
$$

Here we interpret $\vec{\omega}$ as the coordinates of a vector in \mathbb{R}^{3} and ∇ and $\nabla \times$ are the standard gradient and curl operators in \mathbb{R}^{3}.
3. Recall that

$$
\begin{align*}
* \mathcal{F}(R, S) & =\mathcal{F}(S,-R) \tag{6}\\
* d \mathcal{F}(R, S) & =\left[\operatorname{div} S,-\nabla \times R+\partial_{0} S\right] . \tag{7}
\end{align*}
$$

a) Let ω be a l-form. Show $* d d \omega=0$. (In fact, this shows $d^{2}=0$ acting on Λ^{1})
b) Let F be a 2 -form. Show $\delta \delta F=0$.
c) Unwind the definitions and show that if ω is a 1-form, then

$$
\begin{equation*}
-\delta d \omega=\square \omega-d \delta \omega . \tag{8}
\end{equation*}
$$

4. Given a one-form ω we define the associated electric and magnetic fields E and B by

$$
d \omega=\mathcal{F}(E,-c B)
$$

Recalling that Maxwell's equations are

$$
-\delta d \omega=\frac{1}{c \epsilon_{0}}(c \rho,-j)
$$

show that E and B satisfy

$$
\begin{gather*}
\nabla \cdot E=\frac{1}{\epsilon_{0}} \rho \tag{9}\\
\frac{1}{c} \partial_{0} E+\nabla \times B=\frac{1}{c^{2} \epsilon_{0}} j . \tag{10}
\end{gather*}
$$

These are Gauss' Law and Ampere's equation respectively.
Then, from the fact that $\delta^{2}=0$ show that

$$
\begin{array}{r}
\nabla \cdot B=0 \\
c \partial_{0} B+\nabla \times E=0 . \tag{12}
\end{array}
$$

These are Gauss' Law for magnetism and Faraday's Law, respectively.
5. The fact that $d^{2}=0$ when acting on Λ^{0} and Λ^{1} has a partial converse. Use the results on page 184 of the text to prove the following.
a) Suppose on some ball that $d \omega=0$ some some one-form ω. Show that there is a function f on the ball such that $\omega=d f$.
b) Suppose on some ball that $* d F=0$ for some two-form F; this is equivalent to $d F=0$ for the map $d: \Lambda^{2} \rightarrow \Lambda^{3}$ that we did not discuss in detail. Show that there is a one-form ω with $F=d \omega$.

