Math F658: Homework 6 October 16, 2018

1. SR7.2

Solution:
From problem 7.1, we have

(E")? = (m* + m*)c* + 2Emc?

where E’ is the rest energy of the J/y particle and E is the energy of the positron in the
lab frame. But the rest energy of the J/y particle is simply Mc¢? and hence

M?*c* =2m*c* + 2Emc?
and M2 2 2 2.2 M
c* —2m?c
=—————— = Mc*— - m?¢?
2m 2m
The rest energy of the positron in mc? and hence the excess is

M M 2
E - mc? = Mc*— - 2m?c? = Mc? [— - _m] )
2m 2m M

Note that if instead we collide an electron and positron with opposite velocities v and —v
the initial energy is
2mc*y(v) (1)

and the final energy is
Mc? (2)

as the resulting particle is at rest. Thus
2mc*y(v) = Mc* (3)

The excess energy above the rest energy of the electron and the positron is then
2
Mc* - 2mc* = Mc? [1 - _m]
M

This should be compared with our previous excess

Since m << M, we conclude M/(2m) > 1 and thus the execess energy for the equal and
opposite collision is less than that of the collision where the electron is sationary. The
explanation for the difference is that in the first collision there is additional energy due
to the velocity of the J/y particle.

2. SR73
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Solution, part a:
In the observer’s inertial frame we have the momenta

P, = my(u)(c,u)
P, = My(v)(c,-v) (4)
Py =m'y(u')(c, u").

Here the subscript r denotes the rocket, the subscript e denotes the ejecta, and the prime
denotes post-ejection. From conservation of 4 momentum we have

my(u) = My(v) + m'y(u) ()

and
my(u)u=-My(v)v+m'y(u")u'. (6)

Using equation (5) to replace my(u) in equation (6) we conclude
My(v)(u+v)+m'y(u")(u-u")=0. (7)
Note also that since P, — P, = P/,
g(P,-P,P,—P,) =g(P,P) =c*(m'). (8)
But we can directly compute
g(P,-P,P,-P,)=g(P,P)+g(P,P,) - 2g(P,, P,) = ¢*m* + *M* - 2¢(P,, P,).
Working in the rest frame of the rocket we see that g(P,, P,) = y(w)c*mM. Hence
m? + M?* - 2y(w)mM = m". 9)

Solution, part b:
The equation

()= remm (e 1)) 10

follows from the following facts:

o The rocket is traveling at velocity u relative to the observer so the transformation
from the rocket’s frame to the observer’s frame is

y(u)( ! u{c)_ (11)

ufc

o The 4 velocity of the ejecta in the rocket’s frame is y(w)(c, —w).

o The 4 velocity of the ejecta in the observer’s frame is y(v) (¢, -v).



Math F658: Homework 6 October 16, 2018

Solution, part c:
Equation (10) can be equivalently written

1 —ufc\(c)_ c
(e (5] (). ®
Looking at the spatial part of this equation we conclude that
y(Wy)(u+v) =y(w)w. (13)

From equations (7) and (13)
mm'y(u")y(u)(u' —u) = mMy(u)y(v)(u +v) = mMy(w)w. (14)

Equation (9) then implies

mm'y(u")y(u)(v' - u) = %(m2+M2—(m’)2)w. (15)
Solution, part d:
Setting ' — u = du and m’ — m = §m we find
mm'y(u")y(u)du = %(—(m+m')5m+M2)w (16)
and hence 5 . L a2
mm’y(u’)y(u)é :—mw—z6mw+iﬁw. (17)

Using the fact that m’ — m and u’ - u as du, dm — 0 we find
;’nzy(u)zj—:1 = —mw (18)

so long as M?/(8m) — 0. But equation (9) ensures that §m and M are linearly related in
the limit as M — 0, so indeed M?/(dm) — 0.

Solution, part e:
See text.

3. SR33

4. SR 5.9 We note that
o2 = 22 Z(xi)z
and hence
Grad o” = 2(ct, —(-x'), - (-x?), - (-x7)) = 2X.

Moreover, by the chain rule, for any functions f : R - R and g: R"® - R,
Grad f o g(x) = f'(g(x))Grad g.

3
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Hence
Grad f(0*) =2f'(0%)X.

Finally, we observe that

DivX = aoxo + alxl + e+ 33x3 =4.

Now consider f(x) = x7! so

N

f(o?) 25, X)

Then .
Gradg(X,X) = _zg(X,X)ZX'

Now for any function h(x),
Div(h(x)X) = g(Grad f, X) + f(x) DivX
and hence

1 1 1 1

1
Div Grad =4 X, X)-————DivX =4 - =0
vGrad %) e xS e PV A i xy e x)

That is, .

ct? — (xl)Z _ (x2)2 _ (x3)2

solves the wave equation (off of the light cone).

a) Let & e R3, letz € Cand let u(t, x) = ze/(¥*=<5). Show that u is a complex valued
solution of the wave equation. Describe its real part as a wave. What is the speed
of the wave? What direction is it travelling in? What is its frequency?

b) Let f : R3 - C be smooth and compactly supported (i.e., (&) = 0 for £ outside of
some large ball). Show that

U(t x) = Asf(g)ei<s-x—c|5|r>>dg

is a complex-valued solution of the wave equation (and hence its real and imag-
inary parts both solve the wave equation). How is the solution U related to the
kinds of solutions described in part a)?

¢) Show that
u(t,x)=U(t,x)+ U(-t, x) (19)

solves the wave equation with u,(0, x) = 0.
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d) A result from Fourier analysis says that if f : R* - C is, say, continuous and
2 20
L (20)

f(x)= [ F(®ede el

is finite, then

where
1

f(§) = ) fR}f(x)e—iE.xdx, (22)

With this result in hand, describe a strategy for solving the initial value problem

Uy —c*Au=0

u(0,x) = ¢(x)
u;(0,x) = 0.

e) Challenge: describe a strategy for solving the initial value problem
Uy — CZAM = 0
u(0,x)=0
u(0,x) = y.

What new issues appear compared to part d?

Solution:

Solution, part a:
We can write z = re‘? for some r > 0 and 0 € R. Then

u(t, x) = re'&x=clit+6)

Note that
ust = —c|&Pu(t, x)

and
(0:)*u = (&) u(t, x)
fori =1,2,3. Hence

1
Ou = it - Au = ([E - [EF)u=0.

So u is a complex valued solution of the wave equation.

Its real part is
Ru =rcos(&-x—clé|t+0)
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Let

f(s) =rcos(|&|s+0).
Then

Ru(t,x) = f(e-x—ct)

where e = £/|]. This exhibits PRu as a wave traveling in the direction e with velocity c.
Regarding its frequency, consider a sationary observer starting at x = 0. This observer
sees the function values

Ru(t,0) = f(—ct) = rcos([é|ct + ).

Hence, in unit time, the argument to cos passes through |£|c/(27) periods. The frequency
is therefore |&|c/(27).

Solution, part b:

Let
U(t,x) = fR F(E)eEx-dinge

That U(t, x) solves the wave equation comes from linearity of the wave equation, together
with the fact that we can commute integration and differentiation in this case. One always
has to worry about switching limiting operations, and the hypotheses that f is smooth
and compactly supported are sufficient (and are overkill). Note that U is a superposition
of waves with frequencies c|€|/(27) travelling in the directions &/|£|. The coefficeint f (&)
describes the amplitude of the component wave with frequency c|¢|/(27) and direction

&/18].

Solution, part c:

Note that (9,)?U(-t,x) = U, (—t,x) and hence o(U(-t,x)) = (OU)(-t,x) = 0.

That u(t,x) = U(t,x) + U(—t, x) solves the wave equation follows from linearity. More-
over
u:(0,x) = Us(0,x) = U (0,x) = 0.

That 6i(t,x) = U(t,x) — U(-t,x) solves the wave equation also follows from linearity.
Moreover
#(0,x) = U, (0,x) = U;(0,x) = 0.

Solution, part d:

Consider a solution of the form
u(t,x)=U(t,x)+ U(-t, x)

where

U(t,x) = [ f(§)elE de.

6
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Note that .
u(0, x) = [zf(.s)ef<f-x de.
But we can write

8(x)= [ $(&)e de

where
1

h(E) = x)e $¥dx.
$(6)= s [ 8

So we set f(&) = ¢(&)/2. Strictly speaking, this is a strategy, not a solution. In part
b, in order to allow us to glibly interchange integration and differentiation, I added the
hypothesis that f was smooth and compactly supported. This need not be true for ¢.
Nevertheless, when ¢ is square integrable, it turns out that this strategy can be made
rigorous.

Solution, part e:

Now consider a solution of the form
u(t,x)=U(t,x)+ U(-t,x)
where
U(t,x) = [ f(§)elEm de.
Note that

(0, %) = f 20 8if(£)eE dE,

at least when f is compactly supported. We would like

u(0,%) = y(x) = [ (&) ag

where .
WO = gy [, W)

So we require
1
2¢[¢]

Again, we have all the caveats as before: f need not be smooth, nor need it be compactly
supported. The division by || is a new, troublesome wrinkle, and to make this a formal
solution, one would need to also ensure that the singularity in ¢ at 0 does not pose a
problem.

f(&) = —=—54(8).



