
Math F658: Homework 6 October 16, 2018

1. SR 7.2

Solution:
From problem 7.1, we have

(E′)2 = (m2 +m2)c4 + 2Emc2

where E′ is the rest energy of the J/ψ particle and E is the energy of the positron in the
lab frame. But the rest energy of the J/ψ particle is simplyMc2 and hence

M2c4 = 2m2c4 + 2Emc2

and
E = M2c2 − 2m2c2

2m
= Mc2

M
2m

−m2c2

�e rest energy of the positron in mc2 and hence the excess is

E −mc2 = Mc2
M
2m

− 2m2c2 = Mc2 [ M
2m

− 2m
M

] .

Note that if instead we collide an electron and positron with opposite velocities v and −v
the initial energy is

2mc2γ(v) (1)

and the �nal energy is
Mc2 (2)

as the resulting particle is at rest. �us

2mc2γ(v) = Mc2 (3)

�e excess energy above the rest energy of the electron and the positron is then

Mc2 − 2mc2 = Mc2 [1 − 2m
M

]

�is should be compared with our previous excess

Mc2 [ M
2m

− 2m
M

]

Since m << M, we conclude M/(2m) > 1 and thus the execess energy for the equal and
opposite collision is less than that of the collision where the electron is sationary. �e
explanation for the di�erence is that in the �rst collision there is additional energy due
to the velocity of the J/ψ particle.

2. SR 7.3
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Solution, part a:
In the observer’s inertial frame we have the momenta

Pr = mγ(u)(c, u)
Pe = Mγ(v)(c,−v)
P′r = m′γ(u′)(c, u′).

(4)

Here the subscript r denotes the rocket, the subscript e denotes the ejecta, and the prime
denotes post-ejection. From conservation of 4 momentum we have

mγ(u) = Mγ(v) +m′γ(u′) (5)

and
mγ(u)u = −Mγ(v)v +m′γ(u′)u′. (6)

Using equation (5) to replace mγ(u) in equation (6) we conclude

Mγ(v)(u + v) +m′γ(u′)(u − u′) = 0. (7)

Note also that since Pr − Pe = P′r ,

g(Pr − Pe , Pr − Pe) = g(P′r , P′r) = c2(m′)2. (8)

But we can directly compute

g(Pr − Pe , Pr − Pe) = g(Pr , Pr) + g(Pe , Pe) − 2g(Pr , Pe) = c2m2 + c2M2 − 2g(Pr , Pe).

Working in the rest frame of the rocket we see that g(Pr , Pe) = γ(w)c2mM. Hence

m2 +M2 − 2γ(w)mM = m′2. (9)

Solution, part b:
�e equation

γ(v)( c
−v) = γ(u)γ(w)( 1 u/c

u/c 1 )( c
−w) (10)

follows from the following facts:

• �e rocket is traveling at velocity u relative to the observer so the transformation
from the rocket’s frame to the observer’s frame is

γ(u)( 1 u/c
u/c 1 ) . (11)

• �e 4 velocity of the ejecta in the rocket’s frame is γ(w)(c,−w).

• �e 4 velocity of the ejecta in the observer’s frame is γ(v)(c,−v).
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Solution, part c:
Equation (10) can be equivalently written

γ(v)γ(u)( 1 −u/c
−u/c 1 )( c

−v) = γ(w)( c
−w) . (12)

Looking at the spatial part of this equation we conclude that

γ(v)γ(u)(u + v) = γ(w)w . (13)

From equations (7) and (13)

mm′γ(u′)γ(u)(u′ − u) = mMγ(u)γ(v)(u + v) = mMγ(w)w . (14)

Equation (9) then implies

mm′γ(u′)γ(u)(u′ − u) = 1
2
(m2 +M2 − (m′)2)w . (15)

Solution, part d:
Setting u′ − u = δu and m′ −m = δm we �nd

mm′γ(u′)γ(u)δu = 1
2
(−(m +m′)δm +M2)w (16)

and hence
mm′γ(u′)γ(u) δu

δm
= −mw − 1

2
δmw + 1

2
M2

δm
w . (17)

Using the fact that m′ → m and u′ → u as δu, δm → 0 we �nd

m2γ(u)2 du
dm

= −mw (18)

so long asM2/(δm)→ 0. But equation (9) ensures that δm andM are linearly related in
the limit asM → 0, so indeedM2/(δm)→ 0.

Solution, part e:
See text.

3. SR 3.3

4. SR 5.9 We note that
σ2 = c2t2 −∑(x i)2

and hence
Grad σ2 = 2(ct,−(−x1),−(−x2),−(−x3)) = 2X .

Moreover, by the chain rule, for any functions f ∶ R→ R and g ∶ R1,3 → R,

Grad f ○ g(x) = f ′(g(x))Grad g .
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Hence
Grad f (σ 2) = 2 f ′(σ2)X .

Finally, we observe that

Div X = ∂0x0 + ∂1x1 +⋯ + ∂3x3 = 4.

Now consider f (x) = x−1 so
f (σ 2) = 1

g(X , X)
�en

Grad
1

g(X , X) = −2 1
g(X , X)2X .

Now for any function h(x),

Div(h(x)X) = g(Grad f , X) + f (x)Div X

and hence

DivGrad
1

g(X , X) = 4 1
g(X , X)3 g(X , X)− 1

g(X , X)2 Div X = 4 [ 1
g(X , X)2 −

1
g(X , X)2 ] = 0.

�at is,
1

ct2 − (x1)2 − (x2)2 − (x3)2

solves the wave equation (o� of the light cone).

5.

a) Let ξ ∈ R3, let z ∈ C and let u(t, x) = ze i(ξ⋅x−c∣ξ∣t)). Show that u is a complex valued
solution of the wave equation. Describe its real part as a wave. What is the speed
of the wave? What direction is it travelling in? What is its frequency?

b) Let f̂ ∶ R3 → C be smooth and compactly supported (i.e., f (ξ) = 0 for ξ outside of
some large ball). Show that

U(t, x) = ∫
R3
f̂ (ξ)e i(ξ⋅x−c∣ξ∣t))dξ

is a complex-valued solution of the wave equation (and hence its real and imag-
inary parts both solve the wave equation). How is the solution U related to the
kinds of solutions described in part a)?

c) Show that
u(t, x) = U(t, x) +U(−t, x) (19)

solves the wave equation with ut(0, x) = 0.
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d) A result from Fourier analysis says that if f ∶ R3 → C is, say, continuous and

∫
R3

∣ f ∣2 (20)

is �nite, then
f (x) = ∫

R3
f̂ (ξ)e iξ⋅xdξ (21)

where
f̂ (ξ) = 1

(2π)3 ∫R3
f (x)e−iξ⋅xdx . (22)

With this result in hand, describe a strategy for solving the initial value problem

utt − c2∆u = 0
u(0, x) = ϕ(x)
ut(0, x) = 0.

e) Challenge: describe a strategy for solving the initial value problem

utt − c2∆u = 0
u(0, x) = 0
ut(0, x) = ψ.

What new issues appear compared to part d?

Solution:

Solution, part a:
We can write z = re iθ for some r > 0 and θ ∈ R. �en

u(t, x) = re i(ξ⋅x−c∣ξ∣t+θ).

Note that
ut t = −c2∣ξ∣2u(t, x)

and
(∂i)2u = −(ξ i)2u(t, x)

for i = 1, 2, 3. Hence

◻u = 1
c2
ut t − ∆u = (∣ξ∣2 − ∣ξ∣2)u = 0.

So u is a complex valued solution of the wave equation.

Its real part is
Ru = r cos(ξ ⋅ x − c∣ξ∣t + θ)
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Let
f (s) = r cos(∣ξ∣s + θ).

�en
Ru(t, x) = f (e ⋅ x − ct)

where e = ξ/∣ξ∣.�is exhibits Ru as a wave traveling in the direction e with velocity c.
Regarding its frequency, consider a sationary observer starting at x = 0. �is observer
sees the function values

Ru(t, 0) = f (−ct) = r cos(∣ξ∣ct + θ).

Hence, in unit time, the argument to cos passes through ∣ξ∣c/(2π) periods. �e frequency
is therefore ∣ξ∣c/(2π).

Solution, part b:

Let
U(t, x) = ∫

R3
f̂ (ξ)e i(ξ⋅x−c∣ξ∣t))dξ

�atU(t, x) solves thewave equation comes from linearity of thewave equation, together
with the fact that we can commute integration and di�erentiation in this case. One always
has to worry about switching limiting operations, and the hypotheses that f̂ is smooth
and compactly supported are su�cient (and are overkill). Note thatU is a superposition
of waves with frequencies c∣ξ∣/(2π) travelling in the directions ξ/∣ξ∣. �e coe�ceint f̂ (ξ)
describes the amplitude of the component wave with frequency c∣ξ∣/(2π) and direction
ξ/∣ξ∣.

Solution, part c:

Note that (∂t)2U(−t, x) = Utt(−t, x) and hence ◻(U(−t, x)) = (◻U)(−t, x) = 0.
�at u(t, x) = U(t, x)+U(−t, x) solves the wave equation follows from linearity. More-
over

ut(0, x) = Ut(0, x) −Ut(0, x) = 0.

�at ũ(t, x) = U(t, x) − U(−t, x) solves the wave equation also follows from linearity.
Moreover

ũ(0, x) = Ut(0, x) −Ut(0, x) = 0.

Solution, part d:

Consider a solution of the form

u(t, x) = U(t, x) +U(−t, x)

where
U(t, x) = ∫ f̂ (ξ)e i(ξ⋅x−c∣ξ∣t) dξ.
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Note that
u(0, x) = ∫ 2 f̂ (ξ)e i(ξ⋅x dξ.

But we can write
ϕ(x) = ∫ ϕ̂(ξ)e i(ξ⋅x dξ

where
ϕ̂(ξ) = 1

(2π)3 ∫R3
ϕ(x)e−iξ⋅xdx .

So we set f̂ (ξ) = ϕ̂(ξ)/2. Strictly speaking, this is a strategy, not a solution. In part
b, in order to allow us to glibly interchange integration and di�erentiation, I added the
hypothesis that f̂ was smooth and compactly supported. �is need not be true for ϕ.
Nevertheless, when ϕ is square integrable, it turns out that this strategy can be made
rigorous.

Solution, part e:

Now consider a solution of the form

u(t, x) = U(t, x) +U(−t, x)

where
U(t, x) = ∫ f̂ (ξ)e i(ξ⋅x−c∣ξ∣t) dξ.

Note that
ut(0, x) = ∫ −2c∣ξ∣i f̂ (ξ)e i(ξ⋅x dξ,

at least when f̂ is compactly supported. We would like

ut(0, x) = ψ(x) = ∫ ψ̂(ξ)e i(ξ⋅x dξ

where
ψ̂(ξ) = 1

(2π)3 ∫R3
ψ(x)e−iξ⋅xdx .

So we require

f̂ (ξ) = − 1
2c∣ξ∣ ĝ(ξ).

Again, we have all the caveats as before: f̂ need not be smooth, nor need it be compactly
supported. �e division by ∣ξ∣ is a new, troublesome wrinkle, and to make this a formal
solution, one would need to also ensure that the singularity in ĝ at 0 does not pose a
problem.
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