1. SR 7.2
2. SR 7.3
3. SR 3.3
4. SR 5.9
5.

a) Let $\xi \in \mathbb{R}^{3}$, let $z \in \mathbb{C}$ and let $u(t, x)=z e^{i(\xi \cdot x-c|\xi| t))}$. Show that u is a complex valued solution of the wave equation. Describe its real part as a wave. What is the speed of the wave? What direction is it travelling in? What is its frequency?
b) Let $\hat{f}: \mathbb{R}^{3} \rightarrow \mathbb{C}$ be smooth and compactly supported (i.e., $f(\xi)=0$ for ξ outside of some large ball). Show that

$$
U(t, x)=\int_{\mathbb{R}^{3}} \hat{f}(\xi) e^{i(\xi \cdot x-c|\xi| t))} d \xi
$$

is a complex-valued solution of the wave equation (and hence its real and imaginary parts both solve the wave equation). How is the solution U related to the kinds of solutions described in part a)?
c) Show that

$$
\begin{equation*}
u(t, x)=U(t, x)+U(-t, x) \tag{1}
\end{equation*}
$$

solves the wave equation with $u_{t}(0, x)=0$.
d) A result from Fourier analysis says that if $f: \mathbb{R}^{3} \rightarrow \mathbb{C}$ is, say, continuous and

$$
\begin{equation*}
\int_{\mathbb{R}^{3}}|f|^{2} \tag{2}
\end{equation*}
$$

is finite, then

$$
\begin{equation*}
f(x)=\int_{\mathbb{R}^{3}} \hat{f}(\xi) e^{i \xi \cdot x} d \xi \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{f}(\xi)=\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} f(x) e^{-i \xi \cdot x} d x \tag{4}
\end{equation*}
$$

With this result in hand, describe a strategy for solving the initial value problem

$$
\begin{aligned}
u_{t t}-c^{2} \Delta u & =0 \\
u(0, x) & =\phi(x) \\
u_{t}(0, x) & =0
\end{aligned}
$$

e) Challenge: describe a strategy for solving the initial value problem

$$
\begin{aligned}
u_{t t}-c^{2} \Delta u & =0 \\
u(0, x) & =0 \\
u_{t}(0, x) & =\psi .
\end{aligned}
$$

What new issues appear compared to part d ?

