1. SR 6.3

Solution:

The vector from event A to B has direction U and interval σ. Since U has interval c,

$$
B=A+\frac{\sigma}{c} U .
$$

Similarly, $C=B+\frac{\tau}{c} V$ and $C=A+\frac{\tau^{\prime}}{c} V^{\prime}$. Thus

$$
A+\frac{\tau^{\prime}}{c} V^{\prime}=A+\frac{\sigma}{c} U+\frac{\tau}{c} V .
$$

Subtracting A and multiplying by c obtains the relation

$$
\tau^{\prime} V^{\prime}=\sigma U+\tau V
$$

But then

$$
\tau^{\prime 2} c^{2}=g\left(\tau^{\prime} V^{\prime}, \tau^{\prime} V^{\prime}\right)=g(\sigma U+\tau V, \sigma U+\tau V)=\sigma^{2} c^{2}+\tau^{2} c^{2}+2 \sigma \tau g(U, V)
$$

In the frame in which the traveler is at rest in the first part of his journey, $U=(c, 0)$ and $V=\gamma(v)(c, v)$ so $g(U, V)=c^{2} \gamma(v)$. Thus

$$
\tau^{\prime 2}=\operatorname{sigma}{ }^{2}+\tau^{2}+2 \sigma \tau \gamma(v) .
$$

Since $v \neq 0, \gamma(v)>1$. And since $\tau, \sigma>0$,

$$
\tau^{\prime 2}=\operatorname{sigma}^{2}+\tau^{2}+2 \sigma \tau \gamma(v)>\operatorname{sigma}^{2}+\tau^{2}+2 \sigma \tau=(\sigma+\tau)^{2} .
$$

We conclude that $\tau^{\prime}>\sigma+\tau$.
Of course, in classical mechanics, the time difference between the two paths is identical, $\tau^{\prime}=\sigma+\tau$.

The interesting phenomenon here is that the longest path from A to C is the one for the non-accelerating traveler.
2. SR 6.4

Solution:

We may assume the traveler is traveling in the t, x plane and we will ignore the other directions. So $\alpha(\tau)=(\operatorname{ct}(\tau), x(\tau))$ is its path parameterized by proper time. Now α^{\prime} always has length c; this is what it means to be parameterized by proper time. So for each τ there is a uniqe rapidity $\psi(\tau)$ such that the 4 -velocity

$$
V=\alpha^{\prime}(\tau)=c(\cosh (\psi), \sinh (\psi))
$$

Taking another derivative with respect to τ,

$$
A=\alpha^{\prime \prime}(\tau)=c(\sinh (\psi), \cosh (\psi)) \frac{d \psi}{d \tau}
$$

Since $(\sinh (\psi), \cosh (\psi))$ is spacelike with interval -1 ,

$$
g(A, A)-c^{2}\left(\frac{d \psi}{d \tau}\right)^{2}
$$

3. SR 6.5

Solution:

Let

$$
\begin{align*}
& \alpha_{A}(\tau)=\left(c^{2} / a\right)[\sinh (a \tau / c),-\cosh (a \tau / c)] \tag{1}\\
& \alpha_{B}(\tau)=\left(c^{2} / a\right)[\sinh (a \tau / c), \cosh (a \tau / c)] \tag{2}
\end{align*}
$$

be the paths of the two rockets that are accelerating in opposite directions with acceleration a. Then

$$
Z(\tau)=\alpha_{B}(\tau)-\alpha_{A}(-\tau)=\frac{2 c^{2}}{a}[\sinh (a \tau / c), \cosh (a \tau / c)] .
$$

Thus $g(Z, Z)=-4 c^{4} / a^{2}$ for all τ. Moreover,

$$
\begin{align*}
\alpha_{A}^{\prime}(-\tau) & =c[\cosh (-a \tau / c),-\sinh (-a \tau / c)]=c[\cosh (a \tau / c), \sinh (a \tau / c)] \tag{3}\\
\alpha_{B}^{\prime}(\tau) & =c[\cosh (a \tau / c), \sinh (a \tau / c)] \tag{4}
\end{align*}
$$

which are identical. And

$$
g\left(\alpha_{A}^{\prime}(-\tau), Z(\tau)\right)=\frac{2 c^{3}}{a}[\sinh (a \tau / c) \cosh (a \tau / c)-\sinh (a \tau / c) \cosh (a \tau / c)]=0
$$

So Z is a spacelike vector orthogonal to $\alpha_{A}^{\prime}(-\tau)$ and therefore rocket A sees the event $\alpha_{A}(-\tau)$ as simultaneous with the event $\alpha_{B}(\tau)$, at a constant distance $2 c^{2} / a$. The same holds for rocket B since $\alpha_{B}^{\prime}(\tau)=\alpha_{A}^{\prime}(-\tau)$.
This is a difficult problem to reconcile with our intuition from classical mechanics. The key observation is that as rocket A travels into the future, the parts of B 's worldline that A deduces are 'now' actually travel back into the past. So even though A and B are accelerating in opposite directions, in effect A is seeing the course of time for B run in reverse. At each moment the velocities of A and B are deemed equal by A and thus it is no surprise to find that the distance between the rockets remains the same.

Sketching the world lines of A and B it's easy to see, however, that light from rocket A will never reach rocket B. So although B is a constant distance from A, according to A, the rocket A never knows this.
4. Let $\kappa(s)$ be a function on \mathbb{R} and let

$$
\begin{equation*}
\phi(s)=\frac{1}{c} \int_{0}^{s} \kappa(r) d r \tag{5}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\alpha(s)=c \int_{0}^{s}(\cosh (\phi(s)), \sinh (\phi(s)) d s \tag{6}
\end{equation*}
$$

is pararameterized by proper time and has a 4 -acceleration with size $|\kappa(s)|$. What does the sign of κ tell you?

Solution:

From the Fundamental Theorem of Calculus,

$$
\phi^{\prime}(s)=\frac{1}{c} \kappa(s)
$$

and

$$
\alpha^{\prime}(s)=c(\cosh (\phi(s)), \sinh (\phi(s)))
$$

Evidently $g\left(\alpha^{\prime}, \alpha^{\prime}\right)=c^{2}$ and thus α is parameterized by proper time. Moreover,

$$
\alpha^{\prime \prime}(s)=c(\sinh (\phi(s)), \cosh (\phi(s))) \phi^{\prime}(s)=(\sinh (\phi(s)), \cosh (\phi(s))) \kappa(s) .
$$

Therefore $g\left(\alpha^{\prime}, \alpha^{\prime}\right)=-\kappa^{2}$ and curve has acceleration of size κ. Since the x-component of $\alpha^{\prime \prime}$ is $\cosh (\phi(s)) \kappa(s)$, and since $\cosh (\phi)>0$, the sign of κ determines if the acceleration is to the left or to the right.
5. Using some kind of computer technology, generate a graph of a curve in spacetime with acceleration

$$
\begin{equation*}
\kappa(s)=\sin (s) \tag{7}
\end{equation*}
$$

over the interval $s \in[0,2 \pi]$.

Solution:

We use units in which $c=1$.
Following the recipe from the previous problem, if $\kappa(s)=\sin (s)$ we can take

$$
\phi(s)=\frac{1}{c} \int_{0}^{s} \sin (r) d r=1-\cos (s)
$$

But for purposes of our diagram, it's more convenient to take $\phi(s)=-\cos (s)$, which does not change $\phi^{\prime}(s)$ and simply corresponds to an overall boost. Then

$$
\alpha(s)=\int_{0}^{s}(\cosh (\cos (s)),-\sinh (\cos (s)) d s
$$

This integration can be computed numerically, e.g. python's scipy.integrate. quad.
Here's my code

```
from math import *
from scipy.integrate import quad
import numpy as np
import matplotlib.pyplot as pp
def x(s):
return quad( lambda z: sinh(-cos(z)),0,s)
```

```
def t(s):
return quad(lambda z: cosh(-cos(z)),0,s)
tau = np.linspace(0,2*pi,100)
X = [x(s) for s in tau]
T = [t(s) for s in tau]
pp.plot(X,T,color='blue',linewidth=1.5)
tmax = np.max(T)
pp.plot([0,tmax],[0,tmax],color='green',linewidth=2)
pp.plot([0,-tmax],[0,tmax],color='green',linewidth=2)
pp.axis('scaled')
pp.xlabel('$x$')
pp.ylabel('$t$')
pp.savefig('HW5_f1.pdf')
pp.show()
```


6. SR 7.1

Solution:

Before the collision, we have momenta P_{1} and P_{2} with $g\left(P_{1}, P_{1}\right)=M^{2} c^{2}$ and $g\left(P_{2}, P_{2}\right)=$ $m^{2} c^{2}$. After the collision we have momentum $P=P_{1}+P_{2}$. Moreover, $c^{2} g(P, P)$ is the square of the rest energy of a particle with momentum P : after all, in its rest frame $P=$
$\left(c m_{0}, 0\right)$ and $c^{2} g(P, P)=c^{2} c^{2} m_{0}^{2}=\left(m_{0} c^{2}\right)^{2}$ as desired. Thus

$$
\left(E^{\prime}\right)^{2}=c^{2} g(P, P)=c^{2} g\left(P_{1}+P_{2}, P_{2}+P_{2}\right)=c^{2} g\left(P_{1}, P_{1}\right)+c^{2} g\left(P_{2}, P_{2}\right)+2 c^{2} g\left(P_{1}, P_{2}\right) .
$$

Now $g\left(P_{1}, P_{1}\right)=c^{2} M^{2}$ and $g\left(P_{2}, P_{2}\right)=c^{2} m^{2}$. Moreover, since P_{1} has energy E in the lab fame,

$$
P_{1}=(E / c, *) .
$$

Sicne $P_{2}=(c m, 0)$ in the lab frame, $g\left(P_{1}, P_{2}\right)=(E / c) c m=E m$. Thus

$$
\left(E^{\prime}\right)^{2}=c^{2}\left(c^{2} M^{2}+c^{2} m^{2}+2 E m\right)
$$

as desired.

