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1. SR 6.3

Solution:
�e vector from event A to B has direction U and interval σ . Since U has interval c,

B = A+ σ
c
U .

Similarly, C = B + τ
cV and C = A+ τ′

c V ′. �us

A+ τ′

c
V ′ = A+ σ

c
U + τ

c
V .

Subtracting A and multiplying by c obtains the relation

τ′V ′ = σU + τV .

But then

τ′2c2 = g(τ′V ′, τ′V ′) = g(σU + τV , σU + τV) = σ 2c2 + τ2c2 + 2στg(U ,V).

In the frame in which the traveler is at rest in the �rst part of his journey, U = (c, 0) and
V = γ(v)(c, v) so g(U ,V) = c2γ(v). �us

τ′2 = sigma2 + τ2 + 2στγ(v).

Since v ≠ 0, γ(v) > 1. And since τ, σ > 0,

τ′2 = sigma2 + τ2 + 2στγ(v) > sigma2 + τ2 + 2στ = (σ + τ)2.

We conclude that τ′ > σ + τ.
Of course, in classical mechanics, the time di�erence between the two paths is identical,
τ′ = σ + τ.
�e interesting phenomenon here is that the longest path from A to C is the one for the
non-accelerating traveler.

2. SR 6.4

Solution:
We may assume the traveler is traveling in the t, x plane and we will ignore the other
directions. So α(τ) = (ct(τ), x(τ)) is its path parameterized by proper time. Now α′
always has length c; this is what it means to be parameterized by proper time. So for each
τ there is a uniqe rapidity ψ(τ) such that the 4-velocity

V = α′(τ) = c(cosh(ψ), sinh(ψ)).

Taking another derivative with respect to τ,

A = α′′(τ) = c(sinh(ψ), cosh(ψ))dψ
dτ
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Since (sinh(ψ), cosh(ψ)) is spacelike with interval −1,

g(A,A) − c2 (dψ
dτ

)
2

3. SR 6.5

Solution:
Let

αA(τ) = (c2/a)[sinh(aτ/c),− cosh(aτ/c)] (1)
αB(τ) = (c2/a)[sinh(aτ/c), cosh(aτ/c)] (2)

be the paths of the two rockets that are accelerating in opposite directions with acceler-
ation a. �en

Z(τ) = αB(τ) − αA(−τ) =
2c2

a
[sinh(aτ/c), cosh(aτ/c)].

�us g(Z , Z) = −4c4/a2 for all τ. Moreover,

α′A(−τ) = c[cosh(−aτ/c),− sinh(−aτ/c)] = c[cosh(aτ/c), sinh(aτ/c)] (3)
α′B(τ) = c[cosh(aτ/c), sinh(aτ/c)] (4)

which are identical. And

g(α′A(−τ), Z(τ)) =
2c3

a
[sinh(aτ/c) cosh(aτ/c) − sinh(aτ/c) cosh(aτ/c)] = 0.

So Z is a spacelike vector orthogonal to α′A(−τ) and therefore rocket A sees the event
αA(−τ) as simultaneous with the event αB(τ), at a constant distance 2c2/a. �e same
holds for rocket B since α′B(τ) = α′A(−τ).
�is is a di�cult problem to reconcile with our intuition from classical mechanics. �e
key observation is that as rocket A travels into the future, the parts of B’s worldline that
A deduces are ’now’ actually travel back into the past. So even though A and B are accel-
erating in opposite directions, in e�ect A is seeing the course of time for B run in reverse.
At eachmoment the velocities of A and B are deemed equal by A and thus it is no surprise
to �nd that the distance between the rockets remains the same.

Sketching the world lines of A and B it’s easy to see, however, that light from rocket A
will never reach rocket B. So although B is a constant distance from A, according to A,
the rocket A never knows this.

4. Let κ(s) be a function on R and let

ϕ(s) = 1
c ∫

s

0
κ(r) dr. (5)

Show that
α(s) = c∫

s

0
(cosh(ϕ(s)), sinh(ϕ(s)) ds (6)
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is pararameterized by proper time and has a 4-acceleration with size ∣κ(s)∣. What does
the sign of κ tell you?

Solution:
From the Fundamental �eorem of Calculus,

ϕ′(s) = 1
c
κ(s)

and
α′(s) = c(cosh(ϕ(s)), sinh(ϕ(s)))

Evidently g(α′, α′) = c2 and thus α is parameterized by proper time. Moreover,

α′′(s) = c(sinh(ϕ(s)), cosh(ϕ(s)))ϕ′(s) = (sinh(ϕ(s)), cosh(ϕ(s)))κ(s).

�erefore g(α′, α′) = −κ2 and curve has acceleration of size κ. Since the x-component of
α′′ is cosh(ϕ(s))κ(s), and since cosh(ϕ) > 0, the sign of κ determines if the acceleration
is to the le� or to the right.

5. Using some kind of computer technology, generate a graph of a curve in spacetime with
acceleration

κ(s) = sin(s) (7)

over the interval s ∈ [0, 2π].

Solution:
We use units in which c = 1.

Following the recipe from the previous problem, if κ(s) = sin(s) we can take

ϕ(s) = 1
c ∫

s

0
sin(r) dr = 1 − cos(s)

But for purposes of our diagram, it’s more convenient to take ϕ(s) = − cos(s), which does
not change ϕ′(s) and simply corresponds to an overall boost. �en

α(s) = ∫
s

0
(cosh(cos(s)),− sinh(cos(s)) ds

�is integration can be computed numerically, e.g. python’s scipy.integrate.quad.

Here’s my code

from math import *

from scipy.integrate import quad

import numpy as np

import matplotlib.pyplot as pp

def x(s):

return quad( lambda z: sinh(-cos(z)),0,s)

3



Math F658: Homework 5 Solutions October 16, 2018

def t(s):

return quad(lambda z: cosh(-cos(z)),0,s)

tau = np.linspace(0,2*pi,100)

X = [x(s) for s in tau]

T = [t(s) for s in tau]

pp.plot(X,T,color=’blue’,linewidth=1.5)

tmax = np.max(T)

pp.plot([0,tmax],[0,tmax],color=’green’,linewidth=2)

pp.plot([0,-tmax],[0,tmax],color=’green’,linewidth=2)

pp.axis(’scaled’)

pp.xlabel(’$x$’)

pp.ylabel(’$t$’)

pp.savefig(’HW5_f1.pdf’)

pp.show()

8 6 4 2 0 2 4 6 8
x

0

1

2

3

4

5

6

7

8

t

6. SR 7.1

Solution:
Before the collision, we have momenta P1 and P2 with g(P1, P1) = M2c2 and g(P2, P2) =
m2c2. A�er the collision we have momentum P = P1 + P2. Moreover, c2g(P, P) is the
square of the rest energy of a particle with momentum P: a�er all, in its rest frame P =

4
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(cm0, 0) and c2g(P, P) = c2c2m2
0 = (m0c2)2 as desired. �us

(E′)2 = c2g(P, P) = c2g(P1 + P2, P2 + P2) = c2g(P1, P1) + c2g(P2, P2) + 2c2g(P1, P2).

Now g(P1, P1) = c2M2 and g(P2, P2) = c2m2. Moreover, since P1 has energy E in the lab
fame,

P1 = (E/c, ∗).
Sicne P2 = (cm, 0) in the lab frame, g(P1, P2) = (E/c)cm = Em. �us

(E′)2 = c2(c2M2 + c2m2 + 2Em)

as desired.
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