Math F658: Homework 5 Solutions October 16, 2018

1. SR6.3

Solution:
The vector from event A to B has direction U and interval ¢. Since U has interval c,

B=A+2U.
C

Similarly, C=B+Vand C=A+ T;’V’. Thus

!
A+Zvi-a+Zu+ v,
C C C

Subtracting A and multiplying by c obtains the relation
TV =oU+1V.
But then
T2 = g(7'V',7'V') = g(cU +1V,0U + V) = 0*c* + 1°c* + 201g(U, V).

In the frame in which the traveler is at rest in the first part of his journey, U = (¢,0) and
V=y)(c,v)sog(U, V) =c?y(v). Thus

% =sigma® + 72 + 201y(v).
Since v # 0, y(v) > L. And since 7,0 > 0,
1% =sigma® + 7 + 207y(v) > sigma* + 1* + 207 = (0 + )%

We conclude that 7/ > 0 + 7.

Of course, in classical mechanics, the time difference between the two paths is identical,
T'=0+T.

The interesting phenomenon here is that the longest path from A to C is the one for the
non-accelerating traveler.

2. SR6.4

Solution:

We may assume the traveler is traveling in the ¢, x plane and we will ignore the other
directions. So a(7) = (ct(r),x(7)) is its path parameterized by proper time. Now o’
always has length ¢; this is what it means to be parameterized by proper time. So for each
7 there is a uniqe rapidity y(7) such that the 4-velocity

V = &/(7) = c(cosh(y), sinh(y)).

Taking another derivative with respect to 7,

A=da"(1)= c(sinh(w),cosh(w))%
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Since (sinh(y), cosh(vy)) is spacelike with interval -1,

2

s -a(F)

3. SR6.5
Solution:
Let
as(1) = (¢*/a)[sinh(at/c), - cosh(at/c)] (1)
ap(7) = (¢*/a)[sinh(at/c), cosh(at/c)] (2)

be the paths of the two rockets that are accelerating in opposite directions with acceler-
ation a. Then

2 2
Z(7) = ap(7) - ax(-7) = %[sinh(ar/c),cosh(ar/c)].
Thus ¢(Z, Z) = —4c*/a? for all 7. Moreover,

a'y(-1) = c[cosh(-at/c), - sinh(-at/c)] = c[cosh(at/c),sinh(at/c)] (3)
ay (1) = c[cosh(at/c),sinh(at/c)] (4)

which are identical. And

3

g(al(-71),Z(7)) = 2% [sinh(at/c) cosh(at/c) - sinh(at/c) cosh(at/c)] = 0.

So Z is a spacelike vector orthogonal to /,(—7) and therefore rocket A sees the event
a4(—7) as simultaneous with the event ap(7), at a constant distance 2¢?/a. The same
holds for rocket B since a(7) = &/, (-7).

This is a difficult problem to reconcile with our intuition from classical mechanics. The
key observation is that as rocket A travels into the future, the parts of B’s worldline that
A deduces are 'now’ actually travel back into the past. So even though A and B are accel-
erating in opposite directions, in effect A is seeing the course of time for B run in reverse.
At each moment the velocities of A and B are deemed equal by A and thus it is no surprise
to find that the distance between the rockets remains the same.

Sketching the world lines of A and B it’s easy to see, however, that light from rocket A
will never reach rocket B. So although B is a constant distance from A, according to A,
the rocket A never knows this.

4. Let x(s) be a function on R and let

6) = [ty ar. 6)

Show that

a(s) = c/O‘S(cosh(<p(s)),sinh(¢(s)) ds (6)

2
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is pararameterized by proper time and has a 4-acceleration with size |«(s)|. What does
the sign of « tell you?

Solution:
From the Fundamental Theorem of Calculus,

#(5) = <x(s)
and

a'(s) = c(cosh(¢(s)),sinh(¢(s)))

Evidently g(a/, a’) = ¢? and thus « is parameterized by proper time. Moreover,

a”(s) = c(sinh((s)), cosh(¢(s)))¢'(s) = (sinh(¢(s)), cosh(¢(s)))x(s).

Therefore g(a’, a’) = —x? and curve has acceleration of size k. Since the x-component of
a’ is cosh(¢(s))«(s), and since cosh(¢) > 0, the sign of x determines if the acceleration
is to the left or to the right.

5. Using some kind of computer technology, generate a graph of a curve in spacetime with
acceleration

k(s) = sin(s) (7)

over the interval s € [0, 27].

Solution:
We use units in which ¢ = 1.

Following the recipe from the previous problem, if x(s) = sin(s) we can take

é(s) = % Assin(r) dr =1-cos(s)

But for purposes of our diagram, it's more convenient to take ¢(s) = — cos(s), which does
not change ¢’(s) and simply corresponds to an overall boost. Then

a(s) = fos(cosh(cos(s)),—sinh(cos(s)) ds

This integration can be computed numerically, e.g. python’s scipy.integrate.quad.
Here’s my code

from math import *

from scipy.integrate import quad

import numpy as np
import matplotlib.pyplot as pp

def x(s):
return quad( lambda z: sinh(-cos(z)),0,s)

3
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def t(s):
return quad(lambda z: cosh(-cos(z)),0,s)

tau = np.linspace(0,2%pi,100)

X = [x(s) for s in taul
T [t(s) for s in tau]

pp.plot(X,T,color="blue’,linewidth=1.5)

tmax = np.max(T)

pp.plot([0,tmax], [0,tmax],color="green’,linewidth=2)
pp.plot([0,-tmax], [0,tmax],color="green’,linewidth=2)
pp.axis(’scaled’)

pp-xlabel (’$x$’)

pp.ylabel (°$t$’)

pp.savefig("HW5_f1.pdf’)

pp . show ()

6. SR71

Solution:

Before the collision, we have momenta P, and P, with g(P;, P,) = M?c? and g(P,, P,) =
m2c?. After the collision we have momentum P = P, + P,. Moreover, c2g(P, P) is the
square of the rest energy of a particle with momentum P: after all, in its rest frame P =
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(cmyg,0) and c2g(P, P) = c2c?m} = (moc?)? as desired. Thus
(E')? =c?g(P,P)=c*g(Pi+ P, P+ Py) = *g(P, ) + ’g(Py, Po) + 2¢°g(P, Py).

Now ¢(P;, P,) = ¢2M? and g(P,, P,) = c*m?. Moreover, since P, has energy E in the lab
fame,
P = (E/c,*).

Sicne P, = (¢m, 0) in the lab frame, g(P;, P,) = (E/c)cm = Em. Thus
(E")? = *(c*M?* + ¢*m* + 2Em)

as desired.



