
Math F665: Homework 4 Solutions Due: October 7, 2018

1. SR 5.4

Let O and O′ be two non-accelerating observers with inertial coordinate systems related
by a proper orthochronous Lorentz transformation L, with E = LE′. Show that

L =
⎛

⎜
⎜
⎜

⎝

γ −γu′1/c −γu′2/c −γu′3/c
γu1/c ∗ ∗ ∗

γu2/c ∗ ∗ ∗

γu3/c ∗ ∗ ∗

⎞

⎟
⎟
⎟

⎠

(1)

Solution:
�e position of the origin in the O′ is given by (t′, 0, 0, 0). Sending these events through
L we �nd

(ct x y z) = ct′ (L00 L10 L20 L30) . (2)
Hence

t = L00t′ (3)
and

u1 =
dx
dt

=

1
L00

dx
dt′

= c
L10
L00

. (4)

�us
L10 = L00

u1
c
. (5)

A similar equation holds for y and z. Letting γ denote the value of L00 we �nd

L =
⎛

⎜
⎜
⎜

⎝

γ a1 a2 a3
γu1/c ∗ ∗ ∗

γu2/c ∗ ∗ ∗

γu3/c ∗ ∗ ∗

⎞

⎟
⎟
⎟

⎠

(6)

for some numbers γ, a1, a2, and a3 . But

LtGL = G (7)

and consequently from the upper-le� entry of this matrix equation

γ2(1 − (u1/c)2 + (u2/c)2 + (u3/c)2) = 1. (8)

Since L is orthochronus, γ > 0 and hence

γ =
1

√

1 − [(u1)2 + (u2)2 + (u3)2]/c2
= γ(u) (9)

where u =
√

u21 + u22 + u23.

Similar considerations applied to L−1 show that L−1 has the form

L−1 =
⎛

⎜
⎜
⎜

⎝

γ′ ∗ ∗ ∗

γ′u′1/c ∗ ∗ ∗

γ′u′2/c ∗ ∗ ∗

γ′u′3/c ∗ ∗ ∗

⎞

⎟
⎟
⎟

⎠

(10)
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where γ′ = γ(u′) and where u′ =
√

(u′1)2 + (u′2)2 + (u′3)2. But

Lt = GL−1G =

⎛

⎜
⎜
⎜

⎝

γ′ ∗ ∗ ∗

−γ′u′1/c ∗ ∗ ∗

−γ′u′2/c ∗ ∗ ∗

−γ′u′3/c ∗ ∗ ∗

⎞

⎟
⎟
⎟

⎠

(11)

But

Lt =
⎛

⎜
⎜
⎜

⎝

γ γu1/c γu2/c γu3/c
a1 ∗ ∗ ∗

a2 ∗ ∗ ∗

a3 ∗ ∗ ∗

⎞

⎟
⎟
⎟

⎠

(12)

from which we conclude that γ′ = γ and ai = −γu′i/c as required.

2. SR 5.5

Solution:

Let the matrics from the problem be L1, L2, L3 and L4 respectively. It is an easy compu-
tation to show that

Lt1GL1 = G

and that L1 has unit determinant. Since it’s upper-le� entry is positive, this is a proper,
orthochronus Lorentz transformation.

It is a tedious computation (use Matlab/python/Julia/anything!) to check that

Lt2GL2 = G

and that det(L2) = −1. Since it’s upper le� entry is positive this is an orthochronus but
not proper Lorentz transformation.

Notice that L3 is obtained from L2 bymultiplying the �rst columnby−1 and interchanging
themiddle columns. Multiplying the �rst column by −1 is e�ected by rightmultiplication
by

(
−1 0
0 I)

which is evidently a Lorentz transformation. Interchanging the middle columns is ef-
fected by right multiplication by

⎛

⎜
⎜
⎜

⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟
⎟
⎟

⎠

which is readily seen to be a Lorentz transformation (it’s a spatial re
ection). Hence the
composition of L2 with these two matrices is also a Lorentz transformation. It’s deter-
minant is the same as L2 since the sign changes for the column interchange and the �rst

2
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column multiplication cancel. Since the upper-le� entry is negative, we �nd L3 is a non-
proper, non-orthochronus Lorentz transformation.

By these same arguments, L4 is a propoer, orthochronus Lorentz transformation. Its
determinant has the opposite sign of that of L3, and its upper-le� entry is positive.

3. SR 5.6

Let V be a four-vector. Show

i) If V is future pointing timelike, there is an inertial coordinate system in which it
has components (a, 0, 0, 0) with a =

√

g(V ,V).

ii) If V is future pointing null, there is an inertial coordinate system in which it has
components (1, 1, 0, 0) with a =

√

g(V ,V).

Solution:

For part i), assume thatV is future pointing and timelike. A�er applying a spatial rotation
we can assume that V = (V 0,V 1, 0, 0). Pick ϕ by

tanh(ϕ) = −
V 1

V 0 ,

which is possible since tanh is invertible and V 0
> 0. Setting C = cosh(ϕ) and S =

sinh(ϕ), we de�ne

(
V̂ 0

V̂ 1)(
C S
S C)(

V 0

V 1) = (
CV 0

+ SV 1

SV 0
+ CV 1)

But
V̂ 1SV 0

+ CV 1
=

C
V 0 (− tanh(ϕ) +

V 1

V 0) .

Since spatial rotations and the above boost are orhthochronus, so are their composition
and we �nd that we can take V to a vector V̂ = (a, 0, 0, 0) by an orthochronus Lorentz
transformation. Since V is future pointing, so is V̂ and a > 0. Moreover,

√

g(V ,V) =

√

g(LV , LV) =

√

g(aT , aT) = a
√

g(T , T) = a. (13)

Part ii). Let N be a null vector. Just as in the our proof in class of part i), we can �nd an
inertial frame where N has coordinates N 1

≥ 0 and N2
= N3

= 0. Moreover, since N is
null,

(N0
)
2
− (N 1

)
2
= 0 (14)

and since N0
> 0 (N is future pointing) and since N 1

> 0 we conclude

N = (a, a, 0, 0) (15)

for some a > 0.
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We now show by applying a boost that we can transform to (1, 1, 0, 0). Note that for any
rapidity ϕ,

(
cosh(ϕ) sinh(ϕ)
sinh(ϕ) cosh(ϕ))(

a
a) = a (e

ϕ

eϕ) . (16)

Letting ϕ = − log(a) we �nd
a(eϕ , eϕ) = (1, 1) (17)

as needed. Hence we can boost in the (t, x) plane by rapidity ϕ to transform N to
(1, 1, 0, 0).

4. SR 5.7

Show that

i) �e sum of future pointing timelike vectors is future pointing timelike.

ii) �e sum of future pointing null vectors is future pointing timelike or future point-
ing null, and is null if and only if the vectors are linearly dependent.

iii) Every four vector orthogonal to a timelike vector is spacelike.

Solution:

Lemma 4: Let X and Y be causal and future pointing. �en

g(X ,Y) ≥ ∣∣X∣∣∣∣Y ∣∣ (18)

with equality if and only if X and Y are linearly dependent.

Proof. First, suppose X is timelike. Without loss of generality, we may assume

X = (X0, 0, 0, 0) (19)

for some X > 0. �en
g(X ,Y) = X0Y0

= ∣∣X∣∣Y0 (20)

Note that
∣∣Y ∣∣ =

√

(Y0
)
2
− (Y 1

)
2
− (Y 3

)
2
− (Y 3

)
2
≤ ∣Y0

∣ = Y0 (21)

with equality if and only if Y 1
= Y 2

= Y 3
= 0 (i.e. if and only if Y and X are linearly

dependent. Hence
g(X ,Y) ≥ ∣∣X∣∣∣∣Y ∣∣ (22)

with equality if and only if X and Y are linearly dependent.

�e case where Y is timelike follows from our previous argument and symmetry of g, so we
now suppose both X and Y are null. Since ∣∣X∣∣ = ∣∣Y ∣∣ = 0, we need to show that

g(X ,Y) ≥ 0 (23)
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with equality if and only if X and Y are linearly dependent. Without loss of generality we
may assume

X = (1, 1, 0, 0) (24)

and hence
g(X ,Y) = Y0

− Y 1. (25)

Since Y is null and future pointing

Y0
=

√

(Y 1
)
2
+ (Y 2

)
2
+ (Y 3

)
2. (26)

and hence
Y0

≥ ∣Y 1
∣ (27)

with equality if and only if Y 2
= Y 3

= 0. Now

Y0
− Y 1

≥ ∣Y 1
∣ − Y 1

≥ 0 (28)

with equality if and only if Y 2
= Y 3

= 0 and Y 1
≥ 0.

Notice Y = (Y0,Y 1, 0, ) with Y 1
> 0 is equivalent to Y = Y0

(1, 1, 0, 0) since Y is null and
future pointing. Hence in the null case we �nd

g(X ,Y) ≥ 0 (29)

with equality if and only if Y = Y0X as needed.

Now with the main solution.

For parts i) and ii), suppose X and Y are causal and future pointing. Expressing the
vectors with respect to an inertial frame, (X + Y)

0
= X0

+ Y0
> 0 since X0 and Y0 are

positive. Hence X + Y is future pointing.

Lemma 4 implies

g(X + Y , X + Y) = g(X , X) + g(Y ,Y) + 2g(X ,Y)

≥ g(X , X) + g(Y ,Y) + 2∣∣X∣∣∣∣Y ∣∣

= (∣∣X∣∣ + ∣∣Y ∣∣)
2

≥ 0

(30)

with equality if and only if X and Y are linearly dependent and both null. Hence Z is
timelike unless X and Y are null and linearly dependent, in which case Z is null.

For part iii), suppose X is timelike and g(X ,Y) = 0. From our extended version of part
i) we know that if Y is causal and future pointing that g(X ,Y) > 0. If Y is causal and
past pointing, then −Y is causal and future pointing and g(X ,−Y) > 0 and g(X ,Y) < 0.
Hence if g(X ,Y) = 0, then Y is neither causal future pointing, nor causal past pointing.
�at leaves spacelike!

5. SR 5.8 Let X and Y be future pointing and let Z = X + Y . �en
√

g(Z , Z) ≥
√

g(X , X) +

√

g(Y ,Y) (31)
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with equality if and only if X and Y are null and linearly dependent.

Solution:
Lemma 4 implies

(∣∣X∣∣ + ∣∣Y ∣∣)
2
= ∣∣X∣∣

2
+ ∣∣Y ∣∣

2
+2∣∣X∣∣∣∣Y ∣∣ ≤ ∣∣X∣∣

2
+ ∣∣Y ∣∣

2
+2g(X ,Y) = g(X +Y , X +Y) = ∣∣Z∣∣2

(32)
with equality if and only if X and Y are are linearly dependent. Hence

∣∣Z∣∣ ≥ ∣∣X∣∣ + ∣∣Y ∣∣ (33)

with equality if and only if X and Y are linearly dependent.

�is result is akin to the triangle inequality for Euclidean space:

∣∣X + Y ∣∣ ≤ ∣∣X∣∣ + ∣∣Y ∣∣ (34)

with equality if and only if X and Y are linearly dependent. �e inequality in the Eu-
clidean case points in the opposite direction.

6. [�e Peter Mulvey Observation] Your head will be younger than your feet by the time of
your death. Estimate, with justi�cation, how much younger.

Solution:
We apply equation (6.14) from the text,

dτ
dt

=

√

1 − R2ω2
/c2 (35)

concerning the relationship between inertial time and proper time for circular motion.
�e radii in question are the radius of the earth,

R0 = 6400km (36)

and radius, R1 = R0 + 2/1000 corresponding to one’s head. We then have

dτ1
dt

−

dτ0
dt

≈ −

1
1 − R20ω2

/c2
R0(R1 − R0)

ω2

c2
= 7.5 × 10−19 seconds. (37)

Taking the elapsed t to be 100 years we �nd

τ1 − τ0 = 2.4 × 10−9, (38)

i.e about 3 nanoseconds. Of course, one is not standing one’s whole life, and one is not
always standing on the equator of the earth, so this estimate is an overestimate. Still, the
net discrepancy on the order of one nanosecond, the about the time it takes my laptop to
execute a single instruction.
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