1. SR 4.3

See text, page 176.
2. SR 4.4

Two light sources are at rest distance D apart and emit photons in the positive x direction. Show that in a frame where the sources have velocity u along the x-axis, the photons have distance

$$
D \sqrt{\frac{c-u}{c+u}}
$$

apart.

Solution:

Let the coordinates of the moving frame be denoted by (\hat{t}, \hat{x}) so we can take

$$
\binom{c \hat{t}}{\hat{x}}=\gamma\left(\begin{array}{cc}
1 & u / c \\
u / c & 1
\end{array}\right)\binom{c t}{x}
$$

Let L denote this boost.
We will assume that the emissions occur at $t=0$ and that source S_{1} is at $x=0$ and source S_{2} is at $x=D$. In the frame where the sources are moving the emission from S^{1} is at $(0,0)$ again but the emission from S^{2} has coordinates

$$
L\binom{0}{D}=\gamma D\binom{u / c}{1} .
$$

Note that the emission from S_{2} occured after the emission at S_{1} in the moving frame at time $c \hat{t}=\gamma D(u / c)$. At this time, the photon from S_{1} will be at position $c \hat{t}=\gamma D(u / c)$ and hence

$$
\Delta \hat{x}=\gamma D-\gamma D(u / c)=D \frac{1-(u / c)}{\sqrt{1-(u / c)^{2}}}=D \sqrt{\frac{c-u}{c+u}}
$$

This distance remains constant since the photons are both travelling to the right with speed c.
3. The interval between events $E_{1}=\left(t_{1}, x_{1}\right)$ and $E_{2}=\left(t_{2}, x_{2}\right)$ in some inertial coordinate system is

$$
\begin{equation*}
c^{2}\left(t_{1}-t_{2}\right)^{2}-\left(x_{1}-x_{2}\right)^{2} \tag{1}
\end{equation*}
$$

Suppose $\iota: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a transformation that preserves the interval between any two events. Assuming that ι is affine, show that there is a (possibly non-proper or nonorthochronus) Lorentz transformation L and a vector $b \in \mathbb{R}^{2}$ such that

$$
\begin{equation*}
\iota(E)=\mathcal{C}^{-1} L \mathcal{C} E+b \tag{2}
\end{equation*}
$$

Here \mathcal{C} is the 2×2 diagonal matrix with diagonal entries c and 1 . Hint: This problem should feel very familiar! And take advantage of problem 4.2!

Solution:

Suppose ι is affine and preserves the interval. Suppose first that ι takes the origin to the origin, so ι is linear. So we can write

$$
\begin{equation*}
\iota(E)=C^{-1} L C E \tag{3}
\end{equation*}
$$

for some matrix L.
Let E be an event. Then

$$
\begin{equation*}
\operatorname{Int}(0, E)=E^{t} C^{t} G C E \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Int}(\iota(0), \iota(E))=\operatorname{Int}(0, \iota(E))=\operatorname{Int}\left(0, C^{-1} L C E\right)=E^{t} C^{t} L^{t} G L C E \tag{5}
\end{equation*}
$$

So for all events E,

$$
\begin{equation*}
E^{t} C^{t} G C E=E^{t} C^{t} L^{t} G L C E \tag{6}
\end{equation*}
$$

Let B be the symmetric bilinear form

$$
\begin{equation*}
B(E, F)=E^{t} C^{t} G C F \tag{7}
\end{equation*}
$$

and let \hat{B} be the symmetric bilinear form

$$
\begin{equation*}
\hat{B}(E, F)=E^{t} C^{t} L^{t} G L C F \tag{8}
\end{equation*}
$$

Since B and \hat{B} agree on the diagonal they are the same, and we conclude that

$$
\begin{equation*}
C^{t} G C=C^{t} L^{t} G L C \tag{9}
\end{equation*}
$$

Multiplying on the right by C^{-1} and on the left by $\left(C^{t}\right)^{-1}=C^{-1}$ we conclude that

$$
\begin{equation*}
G=L^{t} G L \tag{10}
\end{equation*}
$$

Since $G_{0}^{0}=1$ we conclude that

$$
\begin{equation*}
\left(L_{0}^{0}\right)^{2}-\left(L_{1}^{0}\right)^{2}-\left(L^{0}{ }_{2}\right)^{2}-\left(L_{3}^{0}\right)^{2}=1 \tag{11}
\end{equation*}
$$

and consequently $L^{0}{ }_{0} \neq 0$. Moreover, since $\operatorname{det} G \neq 0$ we know that $\operatorname{det} L \neq 0$. Thus there are four possibilities for the sign of L_{0}^{0} and $\operatorname{det} L$ (e.g., both positive, both negative, etc.). If $L^{0}{ }_{0}>0$ and det $L>0$ then we know from problem 4.2 that L is a proper, orthochronus Lorentz transformation. On the other hand, let

$$
F=\left(\begin{array}{cc}
-1 & 0 \tag{12}\\
0 & 1
\end{array}\right) \quad R=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

It is easy to see that $F^{t} G F=G$ and hence

$$
\begin{equation*}
(F L)^{t} G F L=L^{t} F^{t} G F L=L^{t} G L=G . \tag{13}
\end{equation*}
$$

Similarly $(R L)^{t} G R L=G$ and $(R F L)^{t} G(R F L)=G$. It is easy to see that one of $L, R L, F L$, and $R F L$ has positive determinant and a positive upper-left entry. Hence one of these is
a proper orthochronus Lorentz transformation and L is therefore the composition of a proper orthochronus Lorentz transformation with a space or time reflection (or both).
4. For simplicity the following problem is to be done in one space dimension. Suppose in the frame of some inertial observer a function has the form

$$
\begin{equation*}
f(t, x)=\sin (\omega t) \tag{14}
\end{equation*}
$$

for some angular frequency ω. Now consider the frame of some observer traveling with velocity v relative to the original frame. Determine the time difference between peaks of the function as seen by the boosted observer.

Solution:

Let (\hat{t}, \hat{x}) be inertial coordinates for the boosted observer. Then

$$
\binom{c t}{x}=\gamma(v)\left(\begin{array}{ll}
1 & \frac{v}{c} \tag{15}\\
\frac{v}{c} & 1
\end{array}\right)\binom{c \hat{t}}{\hat{x}}
$$

In particular,

$$
\begin{equation*}
t=\gamma(v)\left[\hat{t}+\left(v / c^{2}\right) \hat{x}\right] . \tag{16}
\end{equation*}
$$

Thus the function for the boosted observer is

$$
\begin{equation*}
f(\hat{t}, \hat{x})=\sin \left(\omega \gamma(v)\left(\hat{t}+\left(v / c^{2}\right) \hat{x}\right)\right) \tag{17}
\end{equation*}
$$

Our observer has coordinates with $\hat{x}=0$ and thus at time \hat{t}, the observer measures the function values to be

$$
\begin{equation*}
\sin (\omega \gamma(v) \hat{t}) \tag{18}
\end{equation*}
$$

The observed period is therefore

$$
\begin{equation*}
\frac{2 \pi}{\omega \gamma(v)} \tag{19}
\end{equation*}
$$

5. Pions are subatomic particles with a half life of $\Delta t=1.8 \times 10^{-8}$ seconds. As a consequence, given a collection of pions left alone for a time Δt, half of the pions will decay into other particles.
A beam of pions is traveling at a speed $v=0.99 c$. Notice that in time Δt the beam travels

$$
\begin{equation*}
\Delta x=0.99 c \Delta t=5.35 \mathrm{~m} \tag{20}
\end{equation*}
$$

and one might expect that the beam diminishes in intensity by one half every 5.35 m . Instead, it deminishes by one half every 38 m or so. Explain the discrepancy.

Solution:

Let (\hat{t}, \hat{x}) be coordinates in the rest frame of the pions, and let (t, x) be coordinates in the rest frame of the lab. So

$$
\binom{c t}{x}=\gamma(v)\left(\begin{array}{cc}
1 & \frac{v}{c} \tag{21}\\
\frac{v}{c} & 1
\end{array}\right)\binom{c \hat{t}}{\hat{x}} .
$$

where $v / c=0.99$. In the rest frame of the pions, the beam follows the worldline between $(0,0)$ and $(\Delta \hat{t}, 0)$ and diminishes intensity by one half. Here $\Delta \hat{t}=1.8 \times 10^{-8}$ seconds.
Transforming to the lab frame, the beam starts at $(0,0)$ and reaches

$$
\binom{c t}{x}=\gamma(v)\left(\begin{array}{cc}
1 & \frac{v}{c} \tag{22}\\
\frac{v}{c} & 1
\end{array}\right)\binom{c \Delta \hat{t}}{0}=\gamma(v) \Delta \hat{t}\binom{c}{v}
$$

when the beam has diminished in intensity by one half. Note that the x coordinate is

$$
\begin{equation*}
\gamma(v) \Delta \hat{t} v=(7.08) \cdot 1.8 \times 10^{-8} \cdot(.99 c)=38 m \tag{23}
\end{equation*}
$$

