1. [Polarization Identity] Let $x \cdot y$ denote the standard dot product in \mathbb{R}^{n} where $n=2$ or $n=3$. and let $|x|$ denote the length of x, so

$$
\begin{equation*}
|x|=\sqrt{x \cdot x} \tag{1}
\end{equation*}
$$

Show that for all $x, y \in \mathbb{R}^{n}$,

$$
\begin{equation*}
x \cdot y=\frac{1}{2}\left[|x+y|^{2}-|x|^{2}-|y|^{2}\right] . \tag{2}
\end{equation*}
$$

This formula is known as the polarization identity, and it shows that if you can compute lengths, then you can also compute the dot product.
2. [Symmetric bilinear maps are determined by their action on the diagonal] A map B : $\mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ is called symmetric if $B(x, y)=B(y, x)$ for all $x, y \in \mathbb{R}^{3}$. We say B is linear in its first argument if $B(x+z, y)=B(x, y)+B(z, y)$ for all x, y, z and if $B(\lambda x, y)=\lambda B(x, y)$ for all $\lambda \in \mathbb{R}$ and all $x, y \in \mathbb{R}^{3}$. The definition for B being linear with respect to its second argument is similar, and we say that B is bilinear if it is linear with respect to both arguments. Suppose B and \hat{B} are both bilinear and symmetric, and that for all $x \in \mathbb{R}^{3}$,

$$
\begin{equation*}
B(x, x)=\hat{B}(x, x) . \tag{3}
\end{equation*}
$$

Show that $B(x, y)=\hat{B}(x, y)$ for all $x, y \in \mathbb{R}^{3}$.
Hint: Try out that polarization trick.
3. In this problem you may assume that every isometry of \mathbb{R}^{3} that sends the origin to itself is a linear map (i.e. there is a 3×3 matrix A such that $i(x)=A x$). Under this assumption (which is true!), show that a map $i: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is an isometry if and only if there is a matrix A such that $A^{t} A=I$ and a vector b such that

$$
\begin{equation*}
i(x)=A x+b \tag{4}
\end{equation*}
$$

Hint: Preserving distance is the same as preserving distance squared! And think about polarization.
4. Suppose that $A \in O(3)$. Show that $A \in S O(3)$ if and only if for all vectors $x, y, z \in \mathbb{R}^{3}$ such that $(0, x, y, z)$ is positively oriented, so is $(0, A x, A y, A z)$.
Bonus: Show that if for for just one positively oriented $(0, x, y, z)$ we know that ($0, A x, A y, A z$), show that we can still conclude that $A \in S O(3)$.
5. SR 4.1 (ii), (iii)
6. SR 4.2

