1. [Polarization Identity] Let $x \cdot y$ denote the standard dot product in \mathbb{R}^n where n = 2 or n = 3. and let |x| denote the length of x, so

$$|x| = \sqrt{x \cdot x}.\tag{1}$$

Show that for all $x, y \in \mathbb{R}^n$,

$$x \cdot y = \frac{1}{2} \left[|x + y|^2 - |x|^2 - |y|^2 \right].$$
⁽²⁾

This formula is known as the polarization identity, and it shows that if you can compute lengths, then you can also compute the dot product.

2. [Symmetric bilinear maps are determined by their action on the diagonal] A map $B : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ is called symmetric if B(x, y) = B(y, x) for all $x, y \in \mathbb{R}^3$. We say *B* is linear in its first argument if B(x+z, y) = B(x, y)+B(z, y) for all x, y, z and if $B(\lambda x, y) = \lambda B(x, y)$ for all $\lambda \in \mathbb{R}$ and all $x, y \in \mathbb{R}^3$. The definition for *B* being linear with respect to its second argument is similar, and we say that *B* is **bilinear** if it is linear with respect to both arguments. Suppose *B* and \hat{B} are both bilinear and symmetric, and that for all $x \in \mathbb{R}^3$,

$$B(x,x) = \hat{B}(x,x). \tag{3}$$

Show that $B(x, y) = \hat{B}(x, y)$ for all $x, y \in \mathbb{R}^3$.

Hint: Try out that polarization trick.

3. In this problem you may assume that every isometry of \mathbb{R}^3 that sends the origin to itself is a linear map (i.e. there is a 3×3 matrix A such that i(x) = Ax). Under this assumption (which is true!), show that a map $i : \mathbb{R}^3 \to \mathbb{R}^3$ is an isometry if and only if there is a matrix A such that $A^t A = I$ and a vector b such that

$$i(x) = Ax + b. \tag{4}$$

Hint: Preserving distance is the same as preserving distance squared! And think about polarization.

4. Suppose that $A \in O(3)$. Show that $A \in SO(3)$ if and only if for all vectors $x, y, z \in \mathbb{R}^3$ such that (0, x, y, z) is positively oriented, so is (0, Ax, Ay, Az).

Bonus: Show that if for for just one positively oriented (0, x, y, z) we know that (0, Ax, Ay, Az), show that we can still conclude that $A \in SO(3)$.

- 5. SR 4.1 (ii), (iii)
- **6.** SR 4.2