- **1.** GR 5.10
- **2.** GR 5.12
- **3.** GR 5.13
- **4.** GR 5.14
- **5.** GR 5.16
- **6.** Let F_{ab} be an EM field. Show that

$$\nabla_{[a}F_{bc]}=2\big(\nabla_aF_{bc}+\nabla_cF_{ab}+\nabla_bF_{ca}\big).$$

Then show that Maxwell's equations for the EM field F_{ab} can be written

$$\nabla_a F^{ab} = \epsilon_0^{-1} J^b \tag{1}$$

$$\nabla_{[a}F_{bc]}=0. (2)$$

where J^b is the current-density 4-vector (ρ, j^1, j^2, j^3) .

7. Suppose S_{ab} and T_{ab} are symmetric tensors and $S_{ab}V^aV^b = T_{ab}V^aV^b$ for all timelike unit vectors V^a . Show that $S_{ab} = G_{ab}$