1. GR 5.10
2. GR 5.12
3. GR 5.13
4. GR 5.14
5. GR 5.16
6. Let $F_{a b}$ be an EM field. Show that

$$
\nabla_{[a} F_{b c]}=2\left(\nabla_{a} F_{b c}+\nabla_{c} F_{a b}+\nabla_{b} F_{c a}\right) .
$$

Then show that Maxwell's equations for the EM field $F_{a b}$ can be written

$$
\begin{gather*}
\nabla_{a} F^{a b}=\epsilon_{0}^{-1} J^{b} \tag{1}\\
\nabla_{[a} F_{b c]}=0 . \tag{2}
\end{gather*}
$$

where J^{b} is the current-density 4 -vector $\left(\rho, j^{1}, j^{2}, j^{3}\right)$.
7. Suppose $S_{a b}$ and $T_{a b}$ are symmetric tensors and $S_{a b} V^{a} V^{b}=T_{a b} V^{a} V^{b}$ for all timelike unit vectors V^{a}. Show that $S_{a b}=G_{a b}$

