- **1.** Suppose that $\alpha^{a}(s)$ is a geodesic. Show that $\alpha^{s}(ks)$ is for any $k \in \mathbb{R}$.
- **2.** Suppose X^a and Y^a are parallel transported along $\alpha^c(s)$. Show that $g_{ab}X^aY^b$ is constant.
- **3.** GR 5.6
- 4. Use the result from GR 5.6 to show that the recipe

$$\nabla_a X^b = \frac{\partial X^b}{\partial x^a} + \Gamma^b_{ac} X^c \tag{1}$$

is a tensorial recipe.

- 5. One way to think about Christoffel symbols is to consider Γ_{bc}^{a} as a collection of matrices M_{b}^{a} , one for each index *c*. Show that the following algorithm can be used to compute Γ_{bc}^{a} .
 - 1. Let u_b be the entries of row c of g_{ab} .
 - 2. Let $A_{ab} = \partial_a u_b$.
 - 3. Let $B_{ab} = A_{ab} A_{ba}$.
 - 4. Let $C_{ab} = \partial_c g_{ab}$.
 - 5. Let $D_{ab} = (1/2)(C_{ab} B_{ab})$.
 - 6. Let $M^{a}_{\ b} = g^{ac} D_{cb}$.

Then $\Gamma^a_{bc} = M^a_{\ b}$.