Antiderivatives

So for, weave taken a function, al computed its derivative (iss. The rate of charge).

Often in $1, f_{e}$, we aced to so backwards: from a rate of clause, compute the original function.

Es. Given water in a tank, if you knew the rate at which water is draining, youid like to compute the unoent of water in the talk.

Def: An atiderivatue of a function $f(x)$ is a function $F(x)$ such that $F^{\prime}(x)=f(x)$.

This is the same: I give you $f(x)$, you and $F(s)$.
There is a catch:
e... Find a function $F(x)$ such that

$$
F^{\prime}(x)=0 \text { for all } x . \text { (I sue you 0) }
$$

Well, $F(x)=5$ everulce will do.
But so rill $F(x)=8 . \quad \operatorname{Or} F(x)=\pi$ !

$$
F(x)=C \text { for an constant } C \text { will work. }
$$

Is the nt all of them? Fran the Mem Value Thowan:
If $F(x)$ is a function defined on an interval ad $F^{\prime}(x)=0$ for all $x$, then $F i s$ constant.
egg.
Find a faction $F(x)$ with $F^{\prime}(x)=x^{2}$.
A little clever ass: $F(x)=\frac{x^{3}}{3}$ will do.
Are there ay others? Sere. $F(x)=\frac{4^{3}}{3}+e^{\pi}$

$$
F(x)=\frac{x^{3}}{3}+19
$$

In fact, suppoe $G(x)$ is a function with $G^{\prime}(x)=x^{2}$ ?

$$
\frac{d}{d x}\left(G(x)-\frac{x^{3}}{3}\right)=G^{\prime}(x)-x^{2}=x^{2}-x^{2}-0
$$

So $G(x)-\frac{x^{3}}{3}=C$ for sone $C$

$$
G(x)=\frac{x^{3}}{3}+C
$$

Upshot:

- If you cnn find ore antidanitet no $F(x)$ of $f(x)$ you cons find lots: $F(x)+c \quad C \subset \mathbb{R}$.
- If the lomain of $f$ is mintaval that all of than.
e.g. Find all antidenatives of $\sin (x)$. By cleverness $\quad \frac{d}{d x}(-\cos (x))=\sin (x)$.
So all antidervatives hue the form

$$
F(x)=-\cos (x)+C
$$

Bad news: taking derivatives is easy.
fundus artidenuatives is had (or impossible if you ask for too mach).
(I con sine yon ore, bat yuan wart like it).

Gerexilly requires cleverness.

Sone rules to help you, based ar dervertie rules:

$$
\begin{aligned}
& \frac{d}{d x}(a F(x))=a F^{\prime}(x) \\
& \frac{d}{d x}_{d x}(F(x)+G(x))=F^{\prime}(x)+G^{\prime}(x)
\end{aligned}
$$

Read them bactaunds and yen set
Thu: If Fix) and $G$ bis are antidenuliver of
$f(x)$ and $g(x) \quad\left(\right.$ so $F^{\prime}(x)=f(x)$ al $\left.G^{\prime}(x)=g(x)\right)$
then

- $a F(x)$ is a anti dare of after) $\forall a \& k$
a $F(x)+G(x) \ldots \ldots f(x)+g(x)$.
e.g. Fad an antienvalire of $f(x)=x^{2}+7 \sin (x)$ artidar of $x^{2}: \frac{x^{3}}{3}$ antider of $\sin (x)=-\cos (x)$ untidend: $F(x)=\frac{x^{3}}{3}-7 \cos (x)$.
e.g. Find all antidenutives of $x^{2}+7 \sin (k)$ :

$$
F(x)=\frac{x^{3}}{3}-7 \cos (x)+C
$$

