Applied Optimization
(a.k, a. What's this good for anyway?)

We're goons to look at problems where we wast to word
maximize or minimize a desired quantity. (minucuze cost,
time. Muximize profit, speed)

Two main tools

1) Etreme Value Thewan.

$$
f(x) \text { on }[a, b] \text {. }
$$

closed, banded.
check uni pts, end points. min/max value is gumarteed to be at ore of here few spots.
2) Concouctry method.

If f is defined on an interval (a, b), possibly infinite, al $f^{\prime}(c)=0$ and $f^{\prime \prime}(x)<0$ ar (a, b), then f admits an absolute maximum at C.

And if $f^{\prime \prime}(x)>0$ on (abb) then f has an abs min it C.

Let's see ar example.

Suppose a con has fixed volume V. What dimensions for the con minimize surface area.

1) Rand problem!
2) Draw a picture: Label iA.

3) Intradue "Q," the quintal to optimize, ad write it in tens of other vars

$$
A=2 \pi r h+2 \pi r^{2}
$$

4) Use relations to express in terms of just I vocable.

$$
\begin{aligned}
& V=\pi r^{2} h \Rightarrow h=\frac{V}{\pi r^{2}} \\
& A=\frac{2 V}{r}+2 \pi r^{2}
\end{aligned}
$$

5) Now apply calculus.

$$
\begin{array}{ll}
\frac{d A}{d r}=-\frac{2 V}{r^{2}}+4 \pi r \rightarrow \text { wit pto? } & 4 \pi r=\frac{2 V}{r^{2}} \\
\frac{d^{2} A}{d r^{2}}=\frac{4 V}{r^{3}}+4 \pi>0 & r^{3}=\frac{V}{2 \pi} \\
r=\left(\frac{V}{2 \pi}\right)^{1 / 3}
\end{array}
$$

for $r>0$!

So, if thee is a crit pt, there is as abs mon hear!

$$
\begin{aligned}
& r=\left(\frac{V}{2 \pi}\right)^{1 / 3} \\
& \begin{aligned}
h=\frac{V}{\pi r^{2}}=\frac{V}{\pi}\left(\frac{2 \pi}{V}\right)^{2 / 3} & =2^{2 / 3}\left(\frac{V}{\pi}\right)^{1 / 3} \\
& =2\left(\frac{V}{2 \pi}\right)^{1 / 3} \\
& =2 r
\end{aligned} \\
& h=2 r!
\end{aligned}
$$

e.g. We are goung to arstuact an open tap box ban a $12^{\prime \prime} \times 12^{\prime \prime}$ square of tr.

Wht is he maximm possible encloged volume?

Volume: $V=(2-2 x)^{2} \cdot x \quad 0 \leqslant x \leqslant 12$

$$
F_{x}
$$

$$
\begin{aligned}
\frac{d V}{d x} & =(12-2 x)^{2}-2(12-2 x) \cdot x \cdot 2 \\
& =(12-2 x)[12-2 x-4 x] \\
& =(12-2 x)(12-6 x)
\end{aligned}
$$

Cloiod uteval methodi check coit pts $(x=6, x=2)$
and ad ptz $(x=0, x=6)$

$$
\begin{aligned}
& V(6)=0=V(0) \\
& V(2)=2 \cdot 8^{2}=128 \mathrm{in}^{3} .
\end{aligned}
$$

