L'Hôpital's Rule:

When we started in with limits we motivated then by obserung we need to deal with $\frac{O}{O}$ to rape with
instatarus rites of charge. And we built denvative tedenolagy to avoid dealing with these limits directly
But we get a bot of payback at this point we con use derivatives to compute $\frac{G}{O}$ licit:

Let's see it in action:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin (x)}{x} \quad \lim _{x \rightarrow 0} \sin (x)=\sin (0)=0 \quad \frac{0}{0} \\
& \lim _{x \rightarrow 0} x=0 \\
& \lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\lim _{x \rightarrow 0} \frac{\frac{d}{d} \sin (x)}{\frac{d}{d x} x}=\lim _{x \rightarrow 0} \frac{\cos (x)}{1}=\frac{\cos (0)}{1}=1 .
\end{aligned}
$$

It's soma be that easy.

L'Hôpitalls Rule (Basic Version)
Suppose f, g are differatiable at a and $f(a)=g(a)=0$, and $g^{\prime}(x) \neq 0$ nair a, except posschicat a.
Then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
so long as the latter limit exists or is $\pm \infty$.
e.g. $\lim _{x \rightarrow 2 \pi} \frac{\cos (x)-1}{x-2 \pi} \quad \begin{aligned} & \cos (2 \pi)-1=0 \\ & 2 \pi-2 \pi=0\end{aligned}$

$$
\lim _{x \rightarrow 2 \pi} \frac{\cos (x)-1}{x-2 \pi}=\lim _{x \rightarrow 2 \pi} \frac{-\sin (x)}{1}=-\sin (2 \pi)=-0=0 .
$$

You absolutely, positively most verify the luppotheses: you've la tug for $0 / 0$.

$$
\begin{aligned}
& \lim _{x \rightarrow 2 \pi} \frac{\cos (-)}{x}=\frac{\cos (2 \pi)}{2 \pi}=\frac{1}{2 \pi} \\
& \text { not } \frac{-\sin (2 \pi)}{1}=0
\end{aligned}
$$

Why does this work? Sketch:

$$
f(x) \approx L_{f}(x) \text { for } x \text { nan } a \text {. }
$$

And if $f(a)=0$

$$
\begin{aligned}
& L_{f}(x)=f(a)-f^{\prime}(a)(x-a) \quad f(a)=0 \\
& L_{f}(x)=f^{\prime}(a)(x-a) \\
& L_{g}(x)=g^{\prime}(a)(x-a) \\
& \frac{f(x)}{g(x)} \approx \frac{L_{f}^{x}(x)}{L_{g}(x)}=\frac{f^{\prime}(a)(x-a)}{g^{\prime}(a)(x-a)}
\end{aligned}
$$

So $\lim _{x \rightarrow a} \frac{f(x)}{g(x)} \approx \lim _{x \rightarrow a} 2 \uparrow=\frac{f^{\prime}(a)}{g^{\prime}(a)}$

There are variations on the rule:
0) Works for $\frac{\infty}{\infty}$, not just \div.

1) It applies to limits at ∞ :

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=0 \\
& \lim _{x \rightarrow \infty} g(x)=0 \quad \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}
\end{aligned}
$$

e.g: $\lim _{x \rightarrow \infty} \frac{x}{e^{x} \bigcup_{\rightarrow \infty}}=\lim _{x \rightarrow \infty} \frac{1}{e^{x}}=\frac{1}{\infty}=0$
2) You con wee it if the result is $\pm \infty$, and for one-sided limits
e. $9 \lim _{x \rightarrow 0^{+}} \frac{x}{\cos (x)-1}=\lim _{x \rightarrow 0^{+}} \frac{1}{-\sin (x)}=\frac{1}{0^{-}}=-\infty$
3) You can use it for inteterminite forms 0.00 if you can massage into $\frac{0}{0}$ or $\frac{00}{00}$
e.g. $\lim _{x \rightarrow \infty} x^{3} e^{-x} \quad \begin{aligned} & x^{3} \rightarrow \infty \\ & e^{-x} \rightarrow 0\end{aligned} \quad$ o. $=$ =?

$$
=\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{3 x^{2}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{6 x}{e^{x}}=\lim _{x \rightarrow \infty} \frac{6}{e^{x}}=\frac{6}{a}=0 .
$$

4) And coin $1^{00}, 0^{0}, 00^{0}$ with more massaging using $\ln e^{x}:$
e.g. $\lim _{x \rightarrow 0} x^{x}$
a) apply la, carpute lonit

$$
\begin{aligned}
\lim _{x \rightarrow 0} \ln \left(x^{x}\right)=\lim _{x \rightarrow 0} x \ln (x)=\lim _{x \rightarrow 0} \frac{\ln (x)}{\frac{1}{x}} & =\lim _{x \rightarrow 0} \frac{\frac{1}{x}}{-\frac{1}{x}} \\
& =\lim _{x \rightarrow 0} \frac{-x^{2}}{x}
\end{aligned}
$$

b) apply e^{x}

$$
=0
$$

$$
\lim _{x \rightarrow 0} x^{x}=\lim _{x \rightarrow 0} e^{\ln \left(x^{x}\right)}=e^{0}=1
$$

Andever $\infty-\infty$ sametines

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{+}} \frac{1}{\ln (x)}-\frac{1}{x-1} \quad \infty-\infty \\
& \quad=\lim _{x \rightarrow 1^{+}} \frac{(x-1)-\ln (x)}{(x-1) \ln (x)} \leqslant \frac{0}{0} \\
& \quad=\lim _{x \rightarrow 1^{+}} \frac{1-\frac{1}{x}}{\ln (x)+\frac{x-1}{x}} \quad \frac{0}{0} \stackrel{H}{=} \lim _{x \rightarrow 1^{+}} \frac{\frac{1}{x^{2}}}{\frac{1}{x}+\frac{1}{x^{2}}}=\lim _{x \rightarrow 1^{+}} \frac{1}{x+1}=\frac{1}{2}
\end{aligned}
$$

