Consider the follow problem:

Ais is being pumped into a spherical balloon at a rate of $4.5 \mathrm{ft}^{3} / \mathrm{min}$.

What is the rate of chase of the volume of the balloon when its radius is 2 ff

We have two related qumbuties:
V : volume of Solan r : radius of billows

$$
V=\frac{4}{3} \pi r^{3}
$$

One of the quantities is changes: V
So the other (r) must as well.
We know the rate of chase of $V\left(\frac{d V}{d t}=4.5 \mathrm{ft}^{3} / \mathrm{min}\right)$
Cm we deduce the nate of change of r ?

$$
V(t)=\frac{4}{3} \pi(r(t))^{3}
$$

Take a derivative with respect to t :

$$
V^{\prime}(t)=\frac{4}{3} \pi 3(r(t))^{2} r^{\prime}(t)
$$

(just the chan vale)

You'll drop the (E)'s, thous:

$$
\begin{gathered}
V=\frac{4}{3} \pi r^{3} \\
\frac{d V}{d t}=\frac{4}{3} \pi 3 r^{2} \frac{d r}{d t} \quad \text { in effect, this is } \\
4.5=\frac{4}{3} \pi \cdot 3 \cdot 2^{2} \frac{d r}{d t} \\
\begin{array}{ll}
\frac{d r}{d t} & =\frac{4.5}{16 \pi}=0.09 \mathrm{ft} / \mathrm{min}
\end{array}
\end{gathered}
$$

This class of problem is knomen as a related rate problem.

We have two qualites that are related to each other (V, r)

We know haw ore ischusis and we wat to knows how the other is chagres.

1) Identify the quantity you know a rate of clause of $(V$: dv/dt)
2) Identify the quantity you wort a vale
af dunce of (r : ld te) of dinge of $(r=b / d t)$
3) Find an equation relating the two quantities

$$
\left(U=4 / 3 \pi r^{3}\right)
$$

4) Take an implicit derivative of both sides of the equation $\left(\frac{d V}{d t}=4+4 r^{2} \frac{d n}{d t}\right)$
5) Substitute for all knee data and solve for the rite of change your wont.
e. 9.

A camera 10 km from a launch site is traclang a racket that is rismg vertically.

How fast is the racket rising if the camera urge θ is increasing at a rate of $0.5 \mathrm{rad} / \mathrm{min}$ when the apple is $\pi / 3$ radians?

Kroon : $\quad \theta=\pi / 3 \mathrm{ral}$

$$
\frac{d \theta}{d t}=0.5 \mathrm{ral} / \mathrm{min}
$$

Want $\frac{d h}{d t}$

$$
\begin{gathered}
\sec ^{2}(\theta) \frac{d \theta}{d t}=\frac{1}{10} \frac{d h}{d t} \\
\frac{d h}{d t}=\sec ^{2} \theta \frac{10 \frac{d \theta}{d t}}{\sqrt{3}\left(\frac{\pi}{3} / 2\right.} \cos (\pi / 3)=\frac{1}{2} \\
\sec (\pi / 3)=2 \\
\frac{d b}{d t}=4 \cdot 10(\mathrm{~km}) \cdot \frac{1}{2} \\
=20 \mathrm{~km} / \mathrm{min}
\end{gathered}
$$

