Last cluss: continucty at a

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

algebraic: "divect sobstitution"

f is continus if cts at evey procht.

Important theorem:

Consider $x^{5}-3 x+1=p(x)$

$$
\begin{aligned}
& p(0)=1 \\
& p(1)=-1
\end{aligned}
$$

Somewhere in $[0,1]$ is a $\operatorname{spot} x$ where $p(x)=0$.

This doesst work fer discontinuous functions
e.9. $f(x)=\left\{\begin{array}{l}1 x \geqslant 0 \\ -1 x<0\end{array}\right.$
$f(x) \neq 0$ ever!

Internediate Value Theorem

If $f(x) 13$ a continuows furction defined as an interual $[a, b]$, for ay y between $f(a)$ al $f(b)$
there is $x \in[0,6]$ with $f(x)=y$.
$\left[\begin{array}{l}\text { In panticuly, if } f(a) \geqslant 0 \text { al } f(b) \leqslant 0 \text { thene } \\ \text { is } x \text { in }[a, b] \text { with } f(x)=0 .\end{array}\right.$

(avents 1) continuity is racessmy
2) domain is an inteval
e.s. $f(x)=\frac{1}{x}$

$$
\begin{array}{ll}
f(1)=1 \\
f(-1)=-1 & \text { is } f(4)=0 \text { ever? }
\end{array}
$$

In soups
a) Show there is a nurser x with $10^{x}=x^{2}$

Limits at m.

$$
\frac{1}{x-1}+2=\frac{2 x-1}{x-1}
$$

Well express this vie $\lim _{x \rightarrow \infty} \frac{2 x-1}{x-1}=2$.

Here's how we can justify:

$$
\begin{aligned}
\substack{\text { top } \rightarrow \infty \\
\text { bottom } \rightarrow \infty\\
} & \\
& \\
& \\
& \\
& \\
& \\
& \rightarrow \text { indetomalsole }
\end{aligned}
$$

Instead:

$$
\lim _{x \rightarrow \infty} \frac{2 x-1}{x-1}=\lim _{x \rightarrow \infty} \frac{2-\frac{1}{x}}{1-1 / x} \quad \text { (multiply top }+ \text { bottom by } \frac{1}{x} \text {). }
$$

Now: $\quad \lim _{x \rightarrow \infty} \frac{1}{x}=0$.
So $\lim _{x \rightarrow \infty} \frac{2-\frac{1}{x}}{1-\frac{1}{x}}=\frac{\lim _{x \rightarrow \infty} 2-\frac{1}{x}}{\lim _{x \rightarrow \infty} 1-\frac{1}{x}}=\frac{2}{1}$
Farts you will need:
(1)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{1}{x}=0 \\
& \lim _{x \rightarrow \infty} \frac{1}{x^{2}}=0 \quad \lim _{x \rightarrow \infty} \frac{1}{x^{r}}=0 \quad r>0 . \\
& \lim _{x \rightarrow \infty} \frac{1}{\sigma x}=0
\end{aligned}
$$

Also, $\lim _{x \rightarrow-\infty} \frac{1}{x}=0$

$$
\frac{1}{x^{2}}=0, \text { etc: }
$$

(2)

$$
\lim _{x \rightarrow-\infty} 10^{x}=0
$$

3:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \arctan (x)=\frac{\pi}{2} \\
& \lim _{x \rightarrow-\infty} \arctan (x)=-\frac{\pi}{2}
\end{aligned}
$$

SRend text about velution between asyuptotes + intinite lanitos.

