About justifying infinite limits:
Consider $f(x)=\frac{5}{3-x}$.
What rs $\lim _{x \rightarrow 3^{+}} f(x)$?
top: $\lim _{x \rightarrow 3^{+}} 5=5$
$\frac{5}{0}$ looks like it uncut be infinite.
bottom $\lim _{x \rightarrow 3^{+}} 3-x=0$ But what sion?

For x near 3, $x>3 \quad 3-x<0$.

$$
\text { E.9. } x=3.01 \quad 3-x=-0.01 \text {. }
$$

I'llindicate this by $\mathcal{O}^{\text {- }}$

$$
\begin{aligned}
& \frac{5}{0^{-}} \Rightarrow-\infty \quad\left(\begin{array}{l}
5 \text { divided by a rally } \\
\text { small negutice number is } \\
\text { a lase negative number }
\end{array}\right) \\
& \frac{t}{0^{+}}, \frac{=}{0^{-}} \Rightarrow+\infty \\
& \frac{+}{0^{-}} \frac{-\infty}{0^{+}} \Rightarrow-\infty \\
& \frac{0}{0^{ \pm}} \rightarrow \text { indeterminate. }
\end{aligned}
$$

Present solutions to wa $2-2,6,7,8$.

Rules for working with limits.

Limits behove well with a number of common operations:

$$
\lim _{x \rightarrow a} f(x)=L \quad \lim _{x \rightarrow a} f(x)=M, \text { cog. }
$$

Then $\quad \lim _{x \rightarrow a}(f(x) \operatorname{tg}(x))=L+M=\left(\lim _{x \rightarrow 0} f(x)\right)+\left(\lim _{x \rightarrow a} g(x)\right)$.

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)-g(x)=L-M \\
& \lim _{x \rightarrow a} f(x) g(x)=L M
\end{aligned}
$$

Division is the early interesting one. Stay tunnel.

Two more:

$$
\begin{aligned}
& \lim _{x \rightarrow a} c=c, a n y \quad c \in \mathbb{R} \\
& \lim _{x \rightarrow a} x=a .
\end{aligned}
$$

The rules are intuitive!

$$
\begin{aligned}
\lim _{x \rightarrow a} x^{2}-2 x+3 & =\lim _{x \rightarrow a} x^{2}+\lim _{x \rightarrow a}-2 x+\lim _{x \rightarrow a} 3 \\
& =\left(\lim _{x \rightarrow a} x\right)\left(\lim _{x \rightarrow a} x\right)+\lim _{x \rightarrow a}(-2) \lim _{x \rightarrow n} x+\lim _{x \rightarrow a} 3 \\
& =a \cdot a+(-2) \cdot a+3 \\
& =a^{2}-2 a+3
\end{aligned}
$$

lie. just substitute $x=a$!
Ill say $f(x)$ has the Dinect Substitution Property at a if $\lim _{\cos 9} f(x)=f(a)$.

From limit rules,
every polynomial hus the dircet substitution property at even point in its domain.

Sunilanly: $\quad \lim _{x \rightarrow a} x^{\frac{1}{n}}=a^{\frac{1}{n}}$ at an point in the lo vans.

These limits re boring. We wouldn't need the limit concept if' this was all there is to -it. Butits good to knew the boring staff so you cm focus on the interesting stuff.

Division is subtle.

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)=L \quad \lim _{x \rightarrow a} g(x)=M \\
& \quad \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{L}{M} \text { so long as } M \neq \partial
\end{aligned}
$$

eg. $\lim _{x \rightarrow 2} \frac{1-2 x}{3 x^{2}+1}=\frac{\lim _{x \rightarrow 2} 1-2 x}{\lim _{x \rightarrow 2} 3 x^{2}+1}=\frac{\frac{1-4}{3 \cdot 4+1}}{L_{\rightarrow 0} \neq 0 \text { ok! }}$
Directsabstitution works for national functions!

If $L \neq 0$ and $\mu=0$, often the one-sided limits one $\pm \infty$. Yean need to do a sign analysis.

$$
\frac{5}{0^{+}} \Rightarrow+\infty \text {, etc. }
$$

For $\frac{0}{0}$, more work! (This is often where all the fur 13)

Key tools:
(1) $\quad \lim _{x \rightarrow \alpha} f(x)=L \Leftrightarrow \lim _{x \rightarrow a^{-}} f(x)=L \& \lim _{x \rightarrow a^{+}} f(x)=L$.
(2) "Limits don't cone about one point."

If $f(x)=g(x)$ except at $x=a$, and if $\lim _{x \rightarrow a} g(x)=L$,

thin $\lim _{x \rightarrow 0} f(x)=L$.

