Big ideas:
average rate of charge $\frac{\text { change in dist }}{\text { change in twine }} \quad \frac{\Delta d}{\Delta t} \frac{d\left(t_{t}\right)-d\left(t_{)}\right)}{t_{1}-t_{0}}$

But if $t_{1}=t_{0}: \frac{0}{0}$

$$
P(t)=1000(1.1)^{t}
$$

What is rate of chase right at $t=1$?

$$
\begin{aligned}
& \frac{P(2)-P(1)}{2-1}=110 \\
& \frac{P(1.1)-P(1)}{1.1-1}=105.34 \\
& \frac{P(1.01)-P(1)}{1.01-1}=104.89 \\
& \begin{aligned}
& \frac{P(\$.00 d)-P(1)}{1.00 d-1 h}==104.8416 \\
& 105.34
\end{aligned} \\
& h=0.01 \quad 104.89 \ldots \\
& h=0.0001 \quad 104.84169 \\
& h=0.0000001 \quad 104.841199
\end{aligned}
$$

We cont take $t_{1}=1$. But

$$
\lim _{t_{1} \rightarrow 1} \frac{p\left(t_{1}\right)-p(1)}{t_{1}-1}=104.8 \ldots .
$$

This is the instunteremen wate of clange of pap at $t=1$.

slope of secut lines correspad bo avenge nates of chre.
slope of thasat line comespals bo as mostantureans unte of clage.

Loot class:
Picture:

There are some variations on the limit theme you neal to know about:

Consider

We'll say $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$. $\quad\left(\lim _{x \rightarrow a} f(x)=\infty\right.$ if the

9

- ∞ is also possible
values of $f \mathrm{~cm}$ be milk as lase (al positive) ap yen wish takes x close to a (hat $x=0$ is at required)

$\lim _{x \rightarrow 0} \frac{1}{x}$ does not exist.
But we hare one-sudad Iminit:
$\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty<$ from the right (Only $x>0$ is under considention)

We con also have ore-siched limits in other contexts:

Heaviside function

$$
H(x)= \begin{cases}1 & x \geq 0 \\ 0 & x<0\end{cases}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} H(x)=1 \\
& \lim _{x \rightarrow 0^{-}} H(x)=0
\end{aligned}
$$

Important fact: if $\lim _{x \rightarrow a^{+}} f(x)=2$ and $\lim _{x \rightarrow a^{-}} f(x)=M$

1) If $L=M \quad \lim _{x \rightarrow a} f(x)=L(=M)$
2) If $L \neq M, \lim _{x \rightarrow n} f(x)$ d.n.e.

About justifying infinite limits:
Consider $f(x)=\frac{5}{3-x}$.
What rs $\lim _{x \rightarrow 3^{+}} f(x)$?
top: $\lim _{x \rightarrow 3^{+}} 5=5$
$\frac{5}{0}$ looks like it uncut be infinite.
bottom $\lim _{x \rightarrow 3^{+}} 3-x=0$ But what sion?

For x near 3, $x>3 \quad 3-x<0$.

$$
\text { E.9. } x=3.01 \quad 3-x=-0.01 \text {. }
$$

I'llindicate this by $\mathcal{O}^{\text {- }}$

$$
\begin{aligned}
& \frac{5}{0^{-}} \Rightarrow-\infty \quad\left(\begin{array}{l}
5 \text { divided by a rally } \\
\text { small negutice number is } \\
\text { a lase negative number }
\end{array}\right) \\
& \frac{t}{0^{+}}, \frac{=}{0^{-}} \Rightarrow+\infty \\
& \frac{+}{0^{-}} \frac{-\infty}{0^{+}} \Rightarrow-\infty \\
& \frac{0}{0^{ \pm}} \rightarrow \text { indeterminate. }
\end{aligned}
$$

