Tues: Recitation worksheet
Wed 8/2d:
Cover solutions to WS-|-1
Graupwork: WS 1-3
The $8 / 30$

Volunteers: $1-3: 5,7,8,10$

Exponent Rales by examples

	Eu.
$5^{6}=5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5$	$(r>0, a, b \in \mathbb{R})$
	$=(5 \cdot 5 \cdot 5 \cdot 5) \cdot(5 \cdot 5)$
	$=5^{4} \cdot 5^{2}$

E.s.	Rule
$(2.7)^{3}=(2.7)(2.7)(2.7)$	$(r, s>0, \quad a \in \mathbb{R})$
$=(2.2 .2)(7.7 .7)$	$(r s)^{a}=r^{a} s^{a}$
$=2^{3} 7^{3}$	
$5^{\prime}=5$	$(r>0)$ $r^{\prime}=r$

Consequaces:

$$
\begin{gathered}
r^{0}=1 \quad\left(r=r^{\prime}=r^{1+0}=r^{\prime} r^{0}=r \cdot r^{0}\right) \\
r^{-1}=\frac{1}{r} \quad\left(1=r^{0}=r^{1+(-1)}=r^{\prime} r^{-1}=r r^{-1}\right. \\
\left.\Rightarrow r^{-1}=1 / r\right)
\end{gathered}
$$

Exponential function:

$$
\begin{aligned}
& f(x)=r^{x} \quad r>0 \\
& \quad\left(\text { e.g. } 2^{x}, 10^{x} e^{x}\right)
\end{aligned}
$$

Do not confuse with power functions

$$
\begin{aligned}
p(x)= & x^{a} \quad a \in \mathbb{R} \\
& \text { e.g. } x^{2}, x^{3}, x^{1 / 3}, x^{-1}
\end{aligned}
$$

the x here is downstairs, not upstairs

Exponential functions arise when thee is an associated doubling (or halving) pheromenon.
E.g. A population of cariban grows by 10% per year ad mitially hus 1000 annals attime $t=0$ years.

Claim:

$$
p(t)=1000 \cdot(1.1)^{t}
$$

(Cr at gear fours of a exporestad function)

Did this work?

$$
\begin{aligned}
p(0)=1000(1.1)^{0} & =1000 \\
p(1)=1000(1.1)^{1} & =1100 \\
p(2)=1000(1.1)^{2} & =1100 \cdot(1.1) \\
& =1100+\left(\frac{1}{10}\right) 1100 \\
& =1210
\end{aligned}
$$

How many caribou after 18 months $=1.5$ years?

$$
p(1.5)=1000(1.1)^{1.5} \approx 1153.69
$$

Where's the doubling?

Suppose instead our function was

$$
\begin{aligned}
& p(t)=10002^{t} \quad(1.1 \rightarrow 2) \\
& p(0)=1000 \\
& p(1)=2000 \\
& p(2)=4000 \\
& p(3)=8000 \quad \text { etc. }
\end{aligned}
$$

The population doubles every time t goes up by 1 .

How absent

$$
\begin{array}{ll}
p(t)=10002^{-t} & ? \\
p(0)=1000 & \\
p(1)=500 & \text { Now it halves every tune } \\
p(2)=250 & t \text { goes up by } 1
\end{array}
$$

How about

$$
\begin{aligned}
p(t) & =10002^{t / 3} \\
p(0) & =1000 \\
p(3) & =2000 \\
p(6) & =10002^{6 / 3} \\
& =10002^{2} \\
& =4000
\end{aligned}
$$

The population doubles when t goes up by 3 .

$$
p(t)=10002^{-t / 3}
$$

Now it halves every tare t goes up by 3
(we call 3 the haf-life of the popuitatiou,
The tune it takes for the pop to be cut in halt; see text examples concerning radioactive isotopes)

Back to the caribou:

Geneal form $C r^{a t} \quad r, a$ are negotiable.
Islam $1000(1.1)^{t}=1000 \cdot 2^{a t}$
for a suitable choice of a.

$$
z^{a t}=\left(2^{a}\right)^{t}
$$

So this is possible if $2^{a}=1.1$,
in which case, the population will dabble every $1 / a$ yours
How do we solve for a? That's exactly what log's are for:

Recall

$$
\begin{array}{ll}
\log _{10}\left(10^{x}\right)=x & 10^{\log _{10} y}=y \\
\log _{2}\left(2^{x}\right)=x & 2^{\log _{2} y}=y \\
\text { etc. }
\end{array}
$$

Exponent rules hire companion log rales

$$
\begin{aligned}
& 10^{x+y}=10^{x} 10^{y} \longleftrightarrow \log _{10}(a b)=\log _{10}(a)+\log _{10}(b) \\
& a=10^{x} \quad b=10^{y} \\
& x=\log _{10} a \quad y=\log _{b} b \\
& \left(10^{x}\right)^{y}=10^{x y} \longleftrightarrow \log _{10}\left(a^{b}\right)=b \log _{10}(a) \\
& \log _{10}\left(a^{y}\right)=x y \\
& \begin{array}{l}
a=10^{x} \quad y=b \\
x=\log _{10} a
\end{array} \\
& 10^{\circ}=1 \longleftrightarrow \log _{10}(1)=0
\end{aligned}
$$

You are welcome to use an base you want; they are all equally good, ad one con be rewritten in terms of mother.

Conman: $\log _{10}$

$$
\log _{e}=\ln
$$

I'll avoid plan log.

$$
\begin{aligned}
1.1 & =2^{a} \\
\log _{10}(1.1) & =\log _{10}\left(2^{a}\right)=a \log _{10}(2) \\
a & =\frac{\log _{10}(1.1)}{\log _{10}(2)} \approx 0.1375 \approx 7.27 \\
\log _{2}(1.1) & =\log _{2}\left(2^{a}\right)=a \log _{2}(2)=a . \\
\log _{2}(1.1) & =\frac{\log _{10}(1.1)}{\log _{10}(2)} \approx 0.1375
\end{aligned}
$$

In geneal, $\log _{a}(x)=\frac{\log _{b}(x)}{\log _{b}(a)}$

Population doubles every $\frac{1}{a} \simeq 7.27$ years.

