The goal of this worksheet is for you construct an orthogonal projection onto a subspace.
Let

$$
\begin{aligned}
& \mathbf{a}_{1}=(1,1,1) \\
& \mathbf{a}_{2}=(0,1,0)
\end{aligned}
$$

Let $V=\operatorname{span}\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right)$. We showed in class that the projection matrix is

$$
P=A\left(A^{t} A\right)^{-1} A^{t}
$$

for any matrix A where the columns of A are a basis for V.

1. Explain why the columns of $A=\left[\mathbf{a}_{1}, \mathbf{a}_{2}\right]$ form a basis for V.
2. Form the matrix $A^{t} A$. Then compute its inverse.
3. Compute the full projection matrix.
4. Use your projection matrix to project $(5,2,1)$ onto V

The fact is, we hate making inverse matrices, like $\left(A^{t} A\right)^{-1}$. In the 2×2 case, this is OK. Otherwise, it is a ton of work, and is typically not necessary. For projection, we use a three step process to project \mathbf{b} onto V.

1. Form $A^{t} A$.
2. Solve $A^{t} A \mathbf{x}=A^{t} \mathbf{b}$. You'll use elimination. For a real problem you'll use LU factorization. For a real, real problem a computer will use LU factorization for you.
3. The projection is $A \mathbf{x}$.
4. Use elimination to solve $A^{t} A \mathbf{x}=A^{t}(5,2,1)$.
5. Compute $A \mathbf{x}$ and ensure your solution matches the solution you found earlier,
