The goal of this worksheet is for you construct a line of best fit to some data points.
The big picture is the following. If the system

$$
A \mathbf{z}=\mathbf{b}
$$

does not have a solution, because \mathbf{b} does not lie in the column space of \mathbf{b}, you can solve instead the normal equations

$$
A^{t} A \mathbf{z}=A^{t} \mathbf{b}
$$

This system will always have a solution, and the solution will be the point \mathbf{z} in the column space of A such that $A \mathbf{z}$ is as close to \mathbf{b} as possible, in the sense that the length

$$
\|A \mathbf{z}-\mathbf{b}\|
$$

is minimized.
We want to fit a line to the following (x, y) pairs.

$$
(1,3 / 2),(2,3),(3,0),(4,2)
$$

Yes, there is a fraction. Bummer.

1. Make a sketch, by hand or using Matlab, to visualize the data set.
2. Set up, longhand, equations to solve for m and b to find a line $y=m x+b$ that passes through each of these data points.
3. The equation from the previous step can be written in the form

$$
A \mathbf{z}=\mathbf{b}
$$

where $\mathbf{z}=(m, b)$. What is the matrix A ? What is the vector \mathbf{b} ? (I.e., concretely write down what these object are in terms of actual numbers)
4. Explain why, just glancing at A, that you do not expect there to be a solution.
5. Find a basis for the left-null space of A and use it to verify that

$$
A \mathbf{z}=\mathbf{b}
$$

does not have a solution.
6. Instead, we will find a best fit in the following sense. Given a line $y=m x+b$, it generates four data points at our four x-coordinates:

$$
\hat{y}_{k}=m x_{k}+b
$$

where $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,2,3,4)$. Let $\left(\bar{y}_{1}, \bar{y}_{2}, \bar{y}_{3}, \bar{y}_{4}\right)=(3 / 2,3,0,2)$. We want to minimize the error between $\overline{\mathbf{y}}$ that comes from our original data and $\hat{\mathbf{y}}$ that comes from the line, in the sense that we want to minimize

$$
E=\|\hat{\mathbf{y}}-\overline{\mathbf{y}}\| .
$$

Rewrite this quantity so that it involves the matrix A and the unknown vector $\mathbf{z}=(m, b)$.
7. Sketch, by hand, the lines corresponding to the following choices of $(m, b):(0,0),(0,3)$, $(1,0)$ and $(0,2)$. Which of these four lines do you think has the smallest value of E ? Then compute E for each of these cases.
8. Set up a linear equation to solve for a best fit (m, b).
9. Now solve it and see if it gives a reasonable answer.
10. Challenge! Go back to your answer to problem 5 . Each basis vector gives you a condition that \mathbf{b} must statisfy in order for there to be a solution of $A \mathbf{z}=\mathbf{b}$. Explain, in terms of geometry, slopes, rises, runs or similar what these two conditions actually are.

