Let

$$
A=\left[\begin{array}{cccccc}
1 & -1 & 5 & 2 & -1 & 10 \\
2 & -1 & 7 & 4 & 0 & 20 \\
1 & -1 & 5 & 3 & 0 & 13 \\
0 & -1 & 3 & 1 & -1 & 3
\end{array}\right]
$$

1. (4 points) Let's find a single solution of $A \mathbf{x}=\mathbf{b}$ where $\mathbf{b}=(6,9,8,5)$. I'll do some of the work for you. After forming the augmented matrix $[A \mathbf{b}]$, I did row operations to arrive at

$$
[U \mathbf{w}]=\left[\begin{array}{ccccccc}
1 & -1 & 5 & .2 & -1 & 10 & 6 \\
0 & 1 & -3 & 0 & 2 & 0 & -3 \\
0 & 0 & 0 & 1 & 1 & 3 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

At this stage we could find a solution by applying back substitution to three equations involving three unknowns. What are the three equations? YOU DO NOT NEED TO SOLVE THE EQUATIONS!

$$
\begin{aligned}
x_{1}-x_{2}+2 x_{3} & =6 \\
x_{2} & =-3 \\
x_{3} & =2
\end{aligned}
$$

$$
[U \mathbf{w}]=\left[\begin{array}{ccccccc}
1 & -1 & 5 & 2 & -1 & 10 & 6 \\
0 & 1 & -3 & 0 & 2 & 0 & -3 \\
0 & 0 & 0 & 1 & 1 & 3 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

2. (4 points) Continue doing row operations to bring the system to reduced row echelon form. Then find a single solution \mathbf{x}_{p} of $A \mathbf{x}=\mathbf{b}$.

$$
\begin{aligned}
{\left[\begin{array}{ccccccc}
1 & -1 & 5 & 2 & -1 & 10 & 6 \\
0 & 1 & -3 & 0 & 2 & 0 & -3 \\
0 & 0 & 0 & 1 & 1 & 3 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] } & \sim\left[\begin{array}{ccccccc}
1 & -1 & 5 & 0 & -3 & 4 & 2 \\
0 & 1 & -3 & 0 & 2 & 0 & -3 \\
0 & 0 & 0 & 1 & 1 & 8 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \sim\left[\begin{array}{ccccccc}
1 & 0 & 2 & 0 & -1 & 4 & -1 \\
0 & 1 & -3 & 0 & 2 & 0 & -3 \\
0 & 0 & 0 & 1 & 1 & 3 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
x=(-1,-3,0,2,0,0)
$$

3. (4 points) For each free column of A, find the corresponding special solution \mathbf{n} of $A \mathbf{n}=0$.

$$
n_{1}=\left[\begin{array}{c}
-5 \\
3 \\
1 \\
0 \\
0 \\
0
\end{array}\right] \quad n_{2}=\left[\begin{array}{c}
1 \\
-2 \\
0 \\
-1 \\
1 \\
0
\end{array}\right] \quad n_{z}=\left[\begin{array}{c}
-6 \\
3 \\
0 \\
-2 \\
0 \\
1
\end{array}\right]
$$

