Name: Consider the problem to solve for (x, y)

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] .
$$

1. Express this problem from the column perspective by filling in the blanks:

Find a linear combination of $(1,0,1)$ and $(0,1,1)$ that equals
Draw a diagram that expresses this problem from the row perspective.

$$
\begin{aligned}
x & =1 \\
y & =2 \\
x+y & =1
\end{aligned}
$$

3. Find a vector \mathbf{n} that is perpendicular to each of the columns of the matrix in this equation.

$$
\begin{aligned}
n=(1,1,-1) . \quad \text { Check: } \quad u & =(1,0,1) \quad u \cdot u=1 \cdot 1+1 \cdot 0+1 \cdot(-1)=0 \\
v & =(0,1,1) \quad n \cdot v=1 \cdot 0+1 \cdot 1+(-1) \cdot 1=0
\end{aligned}
$$

4. All of the linear combinations of the columns of this matrix lie in a certain plane. What plane is it?

$$
\text { Then is pie with normal } n=(1,1,-1) \text { passing through } \overrightarrow{0} \text {. }
$$

5. Use \mathbf{n} to show that this problem does not have a solution.

$$
n \cdot b=(1,1,-1) \cdot(1,2,1)=1+2-1=2 \neq 0
$$

