Name:

1. Consider the vector $\mathbf{u} = (1,1,1)$. Find two **nonzero** vectors \mathbf{v} and \mathbf{w} that are perpendicular to \mathbf{u} and are perpendicular to each other.

$$V = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \qquad W = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$

$$\vec{u} \cdot \vec{w} = (-1) + (-1)(1) + 0 \cdot (-2) = 0$$

$$\vec{v} \cdot \vec{v} = (-1) + (-1)(1) + 0 \cdot (-2) = 0$$

2. Again, $\mathbf{u} = (1, 1, 1)$. Suppose \mathbf{z} is another vector and $||\mathbf{z}|| = 2$.

- 1. What is the maximum possible value of $\mathbf{u} \cdot \mathbf{z}$? 253 (Cav My Schwarz)
- 2. What is the minmum possible value of $\mathbf{u} \cdot \mathbf{z}$? $-2\sqrt{3}$ (1743)
- 3. What is the maximum possible value of $\|\mathbf{u} + \mathbf{z}\|$? $Z + \sqrt{3}$ (frame le in cg)
- 4. Give an example of a vector \mathbf{z} with $||\mathbf{z}|| = 2$ such that $||\mathbf{u} + \mathbf{z}||$ attains its maximum possible value.

$$Z = \frac{2}{\sqrt{3}} \vec{u} = \left(\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}\right)$$

$$u + z = \vec{u} + \frac{2}{3}\vec{u} = (1 + \frac{2}{53})\vec{a} \cdot ||\vec{u} + \vec{z}|| = (1 + \frac{2}{53})\vec{a} =$$