Name:

1. Consider the vectors

$$
\mathbf{v}=\left[\begin{array}{c}
3 \\
-2
\end{array}\right] \quad \mathbf{w}=\left[\begin{array}{l}
6 \\
4
\end{array}\right] .
$$

Show that the vector $(2,0)$ can be written as a linear combination of \mathbf{v} and \mathbf{w}.

$$
\begin{array}{r}
a\left[\begin{array}{c}
3 \\
-2
\end{array}\right]+b\left[\begin{array}{l}
6 \\
4
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right] \rightarrow \begin{array}{l}
3 a+6 b=2
\end{array} \rightarrow \begin{array}{l}
a+2 b=\frac{2}{3} \\
-2 a+4 b
\end{array} \\
a=\frac{1}{3}, b=\frac{1}{6}
\end{array} \quad \begin{aligned}
& 8 a+4 b=0
\end{aligned}
$$

$$
\mathbf{v}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \quad \mathbf{w}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]
$$

Either show that \mathbf{x} is a linear combination of \mathbf{v} and \mathbf{w}, or explain why it is not.
If

$$
\begin{gathered}
a \vec{v}+b \vec{w}=\vec{x}, \\
{\left[\begin{array}{c}
a+b \\
-a+b \\
a+b
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]}
\end{gathered}
$$

$$
\begin{aligned}
& \text { s. } \begin{array}{l}
a+b=2 \\
a+b=4
\end{array}<\text { impossible! } \\
& a+b=2
\end{aligned}
$$

$$
\text { So } \vec{x} \text { is not a lune cosbchation of }
$$

3. In the diagram below, draw the set of all linear combinations $a \mathbf{v}+b \mathbf{w}$ such that $a+b=$

$$
\overrightarrow{\text { at } a+b=} \overrightarrow{\vec{w}}
$$ $1 / 2$.

