Here are some things you should know for the midterm, which will cover all of chapters 1 and 2. Everything from the homework and the quizzes is, in particular, fair game. You must know all of that. Here are more study ideas.

Given vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3}, what is a linear combination of these vectors?
Describe all the linear combinations of $(1,1)$ and $(0,1)$.
Describe the set of all vectors $s(1,1)+t(-1,2)$ such that $s>0$ and $t<0$.
What is the definition of $\mathbf{v} \cdot \mathbf{w}$?
What is the definition of the cosine of the angle between \mathbf{v} and \mathbf{w} ?
When is \mathbf{v} perpendicular to \mathbf{w}.
If \mathbf{v} and \mathbf{w} are unit vectors, what is the geometric interpretation of $\mathbf{v} \cdot \mathbf{w}$?
How is the length of a vector associated with the dot product?
What is the Cauchy-Schwartz inequality?
What is the triangle inequality?
Given two vectors in \mathbb{R}^{5}, how do you compute the angle between them?
If \mathbf{v} has length 1 and \mathbf{w} has length 2 , what are the longest and shortest $\mathbf{v}+\mathbf{w}$ can be?
If $A=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right]$ and $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, how is matrix multiplication $A \mathbf{x}$ defined?
Express the following problem using matrix multiplication: Find a linear combination of $(1,0,1),(2,2,2)$, and ($7,0,7$) that equals ($9,0,7$).

Express the following problem using matrix multiplication: Find the intersection of the planes $z=1, x+y-2 z=4$, and $2 x+2 y+1=0$.

Use elimination to convert a linear system to an equivalent upper-triangular linear system.
Use back-substitution to solve an upper-triangular linear system.
Given an augmented matrix $[A \mathbf{b}]$, find a matrix B such that $B[A \mathbf{b}]$ is an upper-triangular system.

Know elimination matrices and row-exchange (i.e. transposition) matrices like the back of your hand. If E is an elimination matrix, know how to quickly multiply $E A$.

What happens if you multiply a matrix by an elimination matrix on the right? I.e. what is $A E$? If P is a permutation matrix that interchanges rows 3 and 5 , what is $A P$?
If A is a matrix and $B=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$, what is $A B$? Use this definition to compute

$$
\left[\begin{array}{cc}
4 & 1 \\
-1 & 4
\end{array}\right]\left[\begin{array}{ll}
6 & 0 \\
1 & 4
\end{array}\right]
$$

Express the third column of

$$
A B=\left[\begin{array}{cccc}
4 & 1 & 6 & -1 \\
2 & -1 & 4 & 4 \\
1 & 6 & -1 & 2 \\
7 & 2 & -3 & 6
\end{array}\right]\left[\begin{array}{cccc}
2 & 0 & 1 & -4 \\
4 & 9 & 6 & 3 \\
1 & 6 & -1 & 2 \\
4 & 9 & 3 & 7
\end{array}\right]
$$

as a linear combination of the columns of A.
When is it legal to multiply $A \mathbf{x}$? When is it legal to multiply $A B$?
What are the row, column, and row-column perspectives on matrix multiplication?
Know how to divide matrices into blocks to be able to do block multiplication.
Given

$$
A=\left[\begin{array}{ccc}
1 & 3 & -1 \\
2 & 0 & 1 \\
-1 & -1 & 3 \\
2 & 0 & 5
\end{array}\right] \quad B=\left[\begin{array}{ccc}
2 & 1 & 1 \\
9 & 0 & 7 \\
4 & -2 & 5
\end{array}\right]
$$

and

$$
A B=\left[\begin{array}{lll}
* & ? & ? \\
* & ? & ? \\
* & * & * \\
* & * & *
\end{array}\right]
$$

compute the subblock marked with ? marks by dividing A and B into appropriately sized blocks, and doing block multiplication to compute just the subblock.

If R_{1}, \ldots, R_{n} are the rows of A, used block multiplication to compute $A B$.
Be able to show that the following are true:

- If A is invertible, the only solution of $A \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$.
- If there is a non-zero solution \mathbf{x} of $A \mathbf{x}=\mathbf{0}$, then A is not invertible.
- If A is invertible, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
- If the equation $A \mathbf{x}=\mathbf{b}$ does not have a solution, then A is not invertible.
- If A is invertible, then the equation $A \mathbf{x}=\mathbf{b}$ can have at most one solution.
- If \mathbf{x}_{1} and \mathbf{x}_{2} are two different solutions of $A \mathbf{x}=\mathbf{b}$, then A is not invertible.

How is the inverse of a matrix defined?
If A is a 7×7 matrix and \mathbf{w} is the $4^{\text {th }}$ column of A^{-1}, what equation does \mathbf{w} solve? If R is the second row of A^{-1}, what is $R A$?

Know how to compute a matrix inverse using Gauss-Jordan elimination.
Know how to factor $A=L U$.

Given a factorization $A=L U$, be able to solve $A \mathbf{x}=\mathbf{b}$.
What is the transpose of a matrix?
$\mathbf{y} \cdot(A \mathbf{x})=? \cdot \mathbf{x}$
Given the description of a permutation matrix, write it down. I.e. write down the 4×4 permutation matrix that takes row 1 to row 3 , row 3 to row 4 , and row 4 to row 2 .
Given a permutation matrix, find its inverse.

