
Math F314: Linear Algebra Lab 2: Fourier Basis

Overview

Suppose we have a sequence of measurements made at equally spaced times. For example

• Temperature at Fairbanks International Airport measured every hour.

• Atmospheric pressure at the surface of a microphonemeasured 44100 times a second.

• Population size of a herd of caribou measured monthly.

After making N such measurements, we obtain an N-dimensional vector of data called a
time series. Its first component is the first measurement, and its last component is the last
measurement. In this lab we will examine a basis for RN that is useful for analyzing time
series data.

Before starting this lab, you should follow the instructions on the web page for creating a
“path” inOctave to tell it about places where to look for data files, scripts, and new functions.
Then download the data file lab2.mat from the course web page and save it to a location in
Octave’s path. To load the data, use the command

load lab2

Don’t worry if you see a warning about a load path; that’s normal. You can verify you loaded
the data set for this lab by typing who at the Octave prompt. This command lists all the cur-
rently known variables. If you have loaded the file correctly, you will then have the variables

• data16

• data256

• data sound

Please consult with me if you have trouble loading the data file into Matlab or Octave.

The exercises in this lab all have a lot of text in them. You’ll need to read them carefully
to determine what to hand in for your answers. Key words include “write”, “explain”, and
“draw”. These are all asking you to do something. Any questions asked in the exercise must
be answered (look for the question marks!). There are only two Octave-generated graphs
that need to be handed in; look for the words “Attach a plot” in the exercise.

Exercise 1:The variable data16 contains 16 measurements. To visualize it, we don’t think of
it as a geometric vector in R16. Instead, we plot the measurements as a function of time (or
of the sample index). Do this for yourself using plot(data16). We can express data16 in
terms of the standard basis for R16:

data16 = x1e1 +⋯xnen .

What is the specific value of x5 in this case? What does x5 tell you?
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Exercise 2: Many time-series measurements can be thought of as a sum of oscillations at
different frequencies. For example, a caribou population can be expected to oscillate over a
period of one year due to annual season changes, but might also undergo oscillations over a
fifty-year time period due to longer-term effects.

In this labwewill look at a basis forRN that allows us to pick data apart into pieces oscillating
at different frequencies. To begin, we need a nice way to represent the times corresponding
to the measured data samples. We will scale time so that the measurements occur over the
time interval [0, 1]. If there are N samples, we will break this interval up into N subintervals.
Andwewill assume that each sample occurs at themiddle of its corresponding time interval.

Under these hypotheses, write down the sample times for N measurements in the following
cases: N = 1, N = 2, N = 3, and N = 4. In the N = 4 case, also draw a schematic diagram of
the interval [0, 1] broken into time intervals, with each of the sample times marked with an
asterisk.

Exercise 3: Write down a formula for sample time tk assuming that there are N samples,
starting at k = 1 and ending at k = N .

Exercise 4: Write dow a one-line Matlab command that you could use to build the vector
of sample times t16 corresponding to data16. Your command should involve the vector
[0:15]’. For yourself, plot(t16,data16). What’s different between this plot and the one
you made in Exercise 1?

Exercise 5: For yourself, plot each of the following vectors:

• g1 = cos( 0 * pi * t16 )

• g2 = cos( 1 * pi * t16 )

• g3 = cos( 2 * pi * t16 )

• g4 = cos( 3 * pi * t16 )

In general, let gk = cos((k − 1) * pi * t16).

1. What frequency does gk oscillate at? Recall that frequency is the reciprocal of the
period.

2. How many total peaks and troughs do you expect that gk has over the time interval
[0, 1]?

3. Why does gk look jaggier as k goes up?

4. Plot g17 for yourself. Then explainwhat you see. A full answer does not just describe
the graph, but also gives an explanation for why it is what it is. Be sure you look at
the scale on the y-axis. It might be helpful to compare the graph of g17 to some of
the earlier gk’s. Keep in mind that the diameter of the nucleus of a gold atom is about
10−14 meters.
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Exercise 6: We will now show that the 16 vectors g1 through g16 form a basis for R16. The
first step is to make a matrix G such that column k of G is gk. Here’s a slick way to do this.
Let

T = t16 ∗ [0 ∶ 15] ∗ pi.

How is column k of T related to t16? Write down a one-line Matlab command that builds
the matrix G. Verify for yourself that you have the right matrix by comparing the plots of
G(:,1), G(:,2), G(:,3), and G(:,4) with those of g1, g2, g3, g4.

Exercise 7: Since G is a 16 × 16 matrix, its columns form a basis for R16 if the matrix is
invertible. One way to test this is do compute the reduced row echelon form of G. Do this
using rref and check that you obtain the identity matrix. Then explain clearly why it would
be enough simply to verify that the lower-right entry is a 1.

Exercise 8: Since the gk’s form a basis forR16, every vector b inR16 can be written uniquely
in the form

b = x1 g1 +⋯ + x16 g16

for certain scalars x1, . . . , x16. To get a feeling for what a representation of this type means,
plot for yourself 3*g1 + 1/2*g4 - 1/8*g10. You can do this using

b = 3 ∗ G(∶, 1) + (1/2) ∗ G(∶, 4) − (1/8) ∗ G(∶, 10)
plot(t16, b)

What part of the resulting graph does the term 3*g0 contribute? What about 1/2*g3? What
about -(1/8)*g10? You might find it easiest to answer these questions by making (for
yourself) graphs that exclude one or more of the three terms.

Exercise 9: Suppose we want to find scalars xi such that

data16 = x1 g0 +⋯ + x16 g15.

Write this problem down as a matrix problem involving G.

Exercise 10: To solve this problem we would normally use a method like LU factorization.
But in this case, G has a very nice inverse. Compute G’*G in Matlab and then describe all of
the entries. Be careful: one entry is different from all the others. This exercise shows that G−1
is nearly the same as GT .

Exercise 11: What is the value of the dot product gi ⋅ g j? Your answer should depend on i
and j. Give an explicit formula. Hint: this has something to do with the previous Exercise.

Exercise 12: Find a diagonal matrix S such that F = G ∗ S satisfies F−1 = FT . Write down the
Matlab commands you used to build S (your answermust involve theMatlab command eye).
How is each column of F related to the corresponding column of G?Why are wemultiplying
G on the right and not on the left?

Exercise 13:The columns of F are known as the Fourier basis forR16. They are better-scaled
vectors from the original basis g1 through g16 you were working with before. I’ll use the
notation f1 through f16 to denote this new basis.
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Given a vector d in R16 we can write

d = x1 f1 +⋯ + x16 f16

for unique numbers x1 through x16. To compute these numbers, we would need to solve

F ∗ x = d.

But since F−1 = FT , the solution is simply

x = F′ ∗ d.

The vector x is called the Fourier transform of d.

Notice the very nice time savings. About how many multiplications would it take to solve
F*x = d using LU-factorization? Howmany multiplications does it take to compute F’*d?

Exercise 14: If I give you the Fourier transform x, how can you reconstruct d using F?

Exercise 15: Let x = F’ * data16 be the Fourier transform of data16. We want to exam-
ine what happens as we build up data16 from x by adding more and more terms. That is,
we want to consider the vectors

y1 = x(1) ∗ F(∶, 1)
y2 = x(1) ∗ F(∶, 1) + x(2) ∗ F(∶, 2)
y3 = x(1) ∗ F(∶, 1) + x(2) ∗ F(∶, 2) + x(3) ∗ F(∶, 3)

and so forth. What does the graph of y1 look like? How are y16 and data16 related?

Exercise 16: Create the variables y1, y3, and y5 according to the formulas above. The visu-
alize them (for yourself) as follows:

plot([data16, y1, y3, y5])

This plots the original data vector and then the three approximations obtained by adding up
the first view terms. Explain what you see in your plots as you addmore terms of the Fourier
basis vectors to your graphs.

Exercise 17: Enter the following Matlab commands

z = x
z(9 ∶ 16) = 0

How is z different from x? Then enter the following Matlab commands

w = x
w(1 ∶ 8) = 0

How is w different from x? What is w + z? What is F(w)+F(z)?
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Exercise 18: Now plot([data16,F*z,F*w]). What effect does leaving out early terms
from the Fourier basis have? What effect does leaving out later terms have?

Exercise 19: Enter the following Matlab commands.

x = zeros(16, 1)
x(2) = 1
x(15) = −.5
d = F ∗ x

For yourself, separately plot the Fourier transform x and the data vector d. Notice that data
vector is a sum of a low frequency component and a high frequency component. How can
you tell this by looking at the graph of the Fourier transform?

Exercise 20: The data vector data256 contains 256 measurement samples. Describe all of
the Matlab command you would use to construct the 256× 256matrix F256 corresponding
to the 16 × 16matrix F we have been working with. You should give commands to make

• t256 corresponding to t16

• G256 corresponding to G

• S256 corresponding to S

• F256 corresponding to F

Now explain two different ways you could verify that the columns of F256 are a basis for
R256.

Exercise 21: The measurement samples in data256 have been contaminated by noise. We
can use the Fourier transform to implement a low-pass filter, which allows low frequency
components to pass through but removes high frequency components. This will eliminate
the high frequency noise in the signal. Write down Matlab commands that use F256 and
that remove much of the noise from the data. Attach a plot of the original data and your
version with the noise removed.

Exercise 22:Thevector data sound contains 8820 samples corresponding to 1/5 of a second
of me trying to sing a note. We would like to analyze it using the Fourier basis, but the
methods we have been using are not efficient enough. For example, the matrix F8820would
needlessly take up over half a gigabyte of memory. Computing

F8820′ ∗ data sound

would take roughly 88202 ≈ 108 multiplications. This is far better than the 88203/3 ≈ 1011
multiplications required by LU factorization, but is still a bit large.

I need to confess at this stage I’ve been telling you a white lie. The transform we are using
here is called the discrete cosine transform. The Fourier transform is a similar, but more
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complex object. In practice, discrete cosine transforms are computed using a fantastic algo-
rithm called the Fast Fourier Transform, which requires only O(N log(N))multiplications.
Note that 8820 log(8820) ≈ 3.5 ⋅ 104, which is dirt cheap!

Those of you using Matlab (not Octave) can compute discrete cosine transforms, based on
the Fast Fourier Transform, using the command dct. You can convert transform data back
into time-series data using the command idct (inverse discrete cosine transform). There
are also official versions of dct and idct for Octave, but they are a hassle to install. I have
posted onmy web page cheesy versions of these functions. They work, and they don’t use up
excessive memory, but they are O(N2) algorithms, not O(N log(N)) algorithms. Please see
the instructions on the course web page on how to install these files if you are using Octave.

Do the following (assuming you still have the matrix F you computed earlier still in mem-
ory):

x16 dct = dct(data16)
x16 = F′ ∗ data16
plot([x16, x16 dct])

and verify that the vectors x16 dct and x16 are the same. The algorithm in dct is ex-
actly what we have been doing (inefficiently). Then compute the discrete cosine transform
x sound of data sound. Plot x sound for yourself, and then describe the features of the
plot.

Exercise 23: What is the sample rate of the audio data in data sound? Your answer should
be in Hz.

Exercise 24: What is the period and the frequency of the function f4 in this case? It might
be helpful to go look at how you found your answer to Exercise 5. But keep in mind that for
that problem we assumed time was scaled so that all the data was sampled between t = 0
and t = 1. You’ll need to adjust this scaling to get a meaningful answer.

Exercise 25: What are all of the dominant frequencies in the audio sample? That is, what
are the frequencies associated with the spikes? What note was I trying to sing? Provide
justification for your answers using the tools developed in this lab. Keep inmind your answer
to Exercise 24.

Exercise 26: Thinking of the audio sample, notice that the discrete cosine transform of the
full signal is nearly zero for most of the frequencies. If we needed to transmit (or store)
this signal, we don’t really need all 8820 components of data sound. We could transmit
(or store) just 1000 numbers instead. What 1000 numbers should we store? How would we
reconstruct the signal based on those 1000 numbers? Attach a plot of thefirst 4milliseconds
of the reconstructed and original signal.

This principle underliesmany techniques of “lossy compression”. High frequencies are omit-
ted with the expectation that they carry little data. The JPEG image standard uses a two di-
mensional discrete cosine transform applied to little 8x8 tiles in the picture. TheMP3 audio
format uses a variation of the discrete cosine transform as well.
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