Exercise 1: Suppose we have two points $\mathbf{p}_{1}=\left(x_{1}, y_{1}\right)$ and $\mathbf{p}_{2}=\left(x_{2}, y_{2}\right)$ and we would like to find the equation of a line $y=m x+b$ going through those points. Substitute these points into the equation of the line to obtain two equations for the unknowns m and b.
Exercise 2: Suppose $\mathbf{p}_{1}=(0.2,0.7)$ and $\mathbf{p}_{2}=(0.8,-0.4)$. What are the equations for m and b ?

Exercise 3: Write these equations in matrix form:

$$
A\left[\begin{array}{c}
m \\
b
\end{array}\right]=\mathbf{v} .
$$

Explicitly write down what A and \mathbf{v} are.
Exercise 4: Solve these equations as follows. First, enter the matrix A into Octave. Then enter the right-hand side \mathbf{v}. Form the augmented matrix $A_{\text {aug }}$ by entering Aaug= [A, v]. Solve the system using M=rref (Aaug). Then extract m and b from their locations in M.

Exercise 5: Verify your solution is correct by making the a plot that contains your line (using the values of m and b that you computed), and contains the two points plotted as circles.

Exercise 6: Now find the equation of a parabola $y=a x^{2}+b x+c$ passing through the points $(-1,1.5),(3,32.2),(5,-42.6)$. You must
a) Record the system of equations to solve.
b) Convert the system into a matrix system.
c) Solve the system using Octave (record the command you used and the solution).
d) Generate a plot that contains the parabola and the three points.

Exercise 7: Explain, in terms of intersecting planes, why if you have only two data points, these determine infinitely many parabolas.
Exercise 8: Explain, in terms of intersecting planes, why if you have four data points, you expect there will be no parabola containing all four points.

Exercise 9: If you have 7 data points $\left(x_{n}, y_{n}\right)$, with all of the x_{n} 's different, these uniquely determine a polynomial of some order. What is the order?

Exercise 10: Find the equation of a polynomial of the kind discussed in the previous step that passes through the points $(1,4),(2,-1),(4,7),(5,-3),(8,1),(9,-10)(11,3)$. You will find the following Ocatave command to be helpful: If $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ has been entered into MATLAB as the column vector c, then the command vander (c) will return the matrix

$$
\left[\begin{array}{ccccc}
c_{1}^{n-1} & c_{1}^{n-2} & \ldots & c_{1} & 1 \\
c_{2}^{n-1} & c_{2}^{n-2} & \ldots & c_{2} & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
c_{n}^{n-1} & c_{n}^{n-2} & \ldots & c_{n} & 1
\end{array}\right] .
$$

This is called a Vandermonde matrix.) Record the formula for your polynomial, together with a graph of it and the data points.

