1. Consider the matrix

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right) .
$$

a) Use elimination to find a matrix E_{21} such that $E_{21} A=U$, where U is upper triangular.
b) Compute E_{21}^{-1}.
c) Explain why $A=E_{21}^{-1} U$.
d) Observe that E_{21}^{-1} is lower-triangluar; let's call it L, so $A=L U$. Use L and U to solve

$$
A \mathbf{x}=(5,7)
$$

Recall: first solve $L \mathbf{c}=\mathbf{b}$, then $U \mathbf{x}=\mathbf{c}$.
2. Consider the matrix

$$
A=\left(\begin{array}{ccc}
4 & 1 & -1 \\
-8 & 0 & -1 \\
12 & 7 & -8
\end{array}\right)
$$

a) Compute the matrices E_{21}, E_{31} and E_{32} obtained using elimination so that

$$
E_{32} E_{31} E_{21} A=U
$$

where U is upper triangular.
b) Using properties of inverse matrices from page 84 (The Inverse of a Product) explain why

$$
A=E_{21}^{-1} E_{31}^{-1} E_{12}^{-1} U
$$

c) Write down the individual matrices E_{21}^{-1}, E_{31}^{-1}, and E_{12}^{-1}.
d) Use brute force matrix multiplication to compute

$$
L=E_{21}^{-1} E_{31}^{-1} E_{12}^{-1}
$$

Is L lower-triangular?
e) Use $A=L U$ to solve $A \mathbf{x}=(7,-26,-1)$.

