1. Suppose a rocket is shot from height $h=0$ meters at time $t=0$ seconds. The height of the rocket is known at times $t=1, t=2, t=3$ and $t=4$ seconds. These heights are h_{1}, \ldots, h_{4}, measured in meters.
a) Determine the average velocity of the rocket on the time intervals $[0,1]$ and $[1,2]$.
b) Let v_{k} denote the average vertical velocity on time interval $[k-1, k]$ and let $\mathbf{v}=$ $\left(v_{1}, \ldots, v_{4}\right)$. Find a matrix A such that

$$
A \mathbf{h}=\mathbf{v}
$$

where $\mathbf{h}=\left(h_{1}, h_{2}, h_{3}, h_{4}\right)$. [Note that we are computing velocities from positions; multiplying by matrix A is kind of like taking a derivative.]
c) Suppose you do not know h_{2} but you know $h_{1}=100 \mathrm{~m}$ and $v_{2}=300 \mathrm{~m} / \mathrm{s}$. What is h_{2} ?
d) Suppose you do not know h_{1} and h_{2} but you know $v_{1}=150 \mathrm{~m} / \mathrm{s}$ and $v_{2}=300 \mathrm{~m} / \mathrm{s}$. What are the values of h_{1} and h_{2} ?
e) Find a matrix S such that if \mathbf{v} is known we can determine \mathbf{h} via

$$
\mathbf{h}=S \mathbf{v} .
$$

[Notice that multiplying by S converts velocities back into positions. It is a kind of integration operation.]
2. Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & -2 & 5 \\
2 & 1 & 0 \\
1 & 3 & -5
\end{array}\right]
$$

Let \mathbf{u}, \mathbf{v} and \mathbf{w} denote the columns of A in that order, so $A=[\mathbf{u} \mathbf{v} \mathbf{w}]$.
a) Show that the columns of A are linearly dependent.
b) Find a nonzero vector \mathbf{n} such that $A \mathbf{x}=\mathbf{b}$ has a solution \mathbf{x} only if $\mathbf{n} \cdot \mathbf{b}=0$.
c) Is there a solution if $\mathbf{b}=(-1,3,5)$? Why?
d) Find three different solutions of $A \mathbf{x}=\mathbf{0}$.
e) Find three different solutions of $A \mathbf{x}=\mathbf{b}$ if $\mathbf{b}=(-1,3,4)$.
3. Find a 3×3 matrix A such that

$$
A \mathbf{x}=\mathbf{b}
$$

has a solution if and only if \mathbf{b} is a multiple of $(1,-2,4)$. That is, for this matrix, a solution exists only if \mathbf{b} lies on a certain line (not just a certain plane!)

