- 1. Suppose a rocket is shot from height h = 0 meters at time t = 0 seconds. The height of the rocket is known at times t = 1, t = 2, t = 3 and t = 4 seconds. These heights are h_1, \ldots, h_4 , measured in meters.
 - a) Determine the average velocity of the rocket on the time intervals [0,1] and [1,2].
 - b) Let v_k denote the average vertical velocity on time interval [k 1, k] and let $\mathbf{v} = (v_1, \dots, v_4)$. Find a matrix *A* such that

 $A\mathbf{h} = \mathbf{v}$

where $\mathbf{h} = (h_1, h_2, h_3, h_4)$. [Note that we are computing velocities from positions; multiplying by matrix *A* is kind of like taking a derivative.]

- c) Suppose you do not know h_2 but you know $h_1 = 100$ m and $v_2 = 300$ m/s. What is h_2 ?
- d) Suppose you do not know h_1 and h_2 but you know $v_1 = 150$ m/s and $v_2 = 300$ m/s. What are the values of h_1 and h_2 ?
- e) Find a matrix *S* such that if **v** is known we can determine **h** via

 $\mathbf{h} = S\mathbf{v}.$

[Notice that multiplying by *S* converts velocities back into positions. It is a kind of integration operation.]

2. Consider the matrix

$$A = \begin{bmatrix} 1 & -2 & 5 \\ 2 & 1 & 0 \\ 1 & 3 & -5 \end{bmatrix}.$$

Let \mathbf{u} , \mathbf{v} and \mathbf{w} denote the columns of A in that order, so $A = [\mathbf{u} \mathbf{v} \mathbf{w}]$.

- a) Show that the columns of *A* are linearly dependent.
- b) Find a nonzero vector **n** such that $A\mathbf{x} = \mathbf{b}$ has a solution **x** only if $\mathbf{n} \cdot \mathbf{b} = 0$.
- c) Is there a solution if $\mathbf{b} = (-1, 3, 5)$? Why?
- d) Find three different solutions of $A\mathbf{x} = \mathbf{0}$.
- e) Find three different solutions of $A\mathbf{x} = \mathbf{b}$ if $\mathbf{b} = (-1, 3, 4)$.
- **3.** Find a 3×3 matrix *A* such that

$$A\mathbf{x} = \mathbf{b}$$

has a solution if and only if **b** is a multiple of (1, -2, 4). That is, for this matrix, a solution exists only if **b** lies on a certain line (not just a certain plane!)