1. The matrix

$$
A=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

has complex eigenvalues.
a) Find both complex eigenvalues, λ_{1} and λ_{2}.
b) Verify that $\overline{\lambda_{1}}=\lambda_{2}$. This is a consequence of the fact that complex roots of real polynomials come in complex conjugate pairs.
c) Let λ_{1} be the eigenvalue with positive real part. Find an eigenvector \mathbf{x}_{1} for it.
d) Let $\mathbf{x}_{2}=\overline{\mathbf{x}_{1}}$ and verify that \mathbf{x}_{2} is an eigenvector for A with eigenvalue $\lambda_{2}=\overline{\lambda_{1}}$.

Remark: This always happens. If λ is a complex eigenvalue of the real matrix A, with eigenvector \mathbf{x}, then

$$
A \overline{\mathbf{x}}=\overline{A \mathbf{x}}=\overline{\lambda x}=\bar{\lambda} \bar{x}
$$

2. Consider the rotation matrix

$$
A=\left[\begin{array}{cc}
c & -s \\
s & c
\end{array}\right]
$$

where c and s are real numbers with $c^{2}+s^{2}=1$. We can write $c=\cos \theta$ and $s=\sin \theta$ for some angle θ. Show that A has eigenvalues $e^{ \pm i \theta}=\cos \theta \pm i \sin \theta$. Then find an eigenvector for each of these eigenvalues.

