1. The matrix

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

has complex eigenvalues.

- a) Find both complex eigenvalues, λ_1 and λ_2 .
- b) Verify that $\overline{\lambda_1} = \lambda_2$. This is a consequence of the fact that complex roots of real polynomials come in complex conjugate pairs.
- c) Let λ_1 be the eigenvalue with positive real part. Find an eigenvector \mathbf{x}_1 for it.
- d) Let $\mathbf{x}_2 = \overline{\mathbf{x}_1}$ and verify that \mathbf{x}_2 is an eigenvector for *A* with eigenvalue $\lambda_2 = \overline{\lambda_1}$. Remark: This always happens. If λ is a complex eigenvalue of the real matrix *A*, with eigenvector \mathbf{x} , then

$$A\overline{\mathbf{x}} = \overline{A\mathbf{x}} = \overline{\lambda x} = \overline{\lambda}\overline{x}.$$

2. Consider the rotation matrix

$$A = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}$$

where *c* and *s* are real numbers with $c^2 + s^2 = 1$. We can write $c = \cos \theta$ and $s = \sin \theta$ for some angle θ . Show that *A* has eigenvalues $e^{\pm i\theta} = \cos \theta \pm i \sin \theta$. Then find an eigenvector for each of these eigenvalues.