1. Consider the matrix

$$A = \begin{pmatrix} 2 & 4 & 5 \\ 2 & 6 & 10 \\ 3 & 7 & 11 \\ 0 & 8 & 12 \end{pmatrix}$$

- a) Find a collection of vectors \mathbf{w}_k such that $A\mathbf{x} = \mathbf{b}$ has a solution if and only if $\mathbf{w}_k \cdot \mathbf{b} = 0$ for each k.
- b) Determine if $A\mathbf{x} = (5, 4, 6, 4)$ has a solution. You do not need to find the solution, if it exists.
- **2.** Find a basis for the orthogonal complement of the plane in \mathbb{R}^4 spanned by (4, 6, 7, 8) and (5, 10, 11, 12).
- **3.** For a square matrix, explain why its null space and its left null space have the same dimension. Then answer the following: is it possible that a square matrix A has an inverse but A^T does not?
- **4.** Suppose **v** is a non-zero vector in \mathbb{R}^4 and let $A = \mathbf{v}\mathbf{v}^T$. The questions below concern an arbitrary choice of **v**. Still, to get a picture of what is going on, you might find it helpful to pick a random vector **v** in \mathbb{R}^4 and examine the properties of that particular $A = \mathbf{v}\mathbf{v}^T$. Nevertheless, your answers need to work in general, not just for one choice of **v**.
 - Compute the dimension of the column space of *A*. You should explain your answer in terms of the column perspective of matrix multiplication.
 - Compute the dimension of the null space of *A*.
 - Explain why the left null space equals the null space for this matrix.
 - True or false: $A\mathbf{x} = \mathbf{0}$ if and only if \mathbf{x} is perpendicular to \mathbf{v} .
 - Does the column space equal the row space for this matrix?
 - Find a condition on **v** that ensures $A^2 = A$.