1. Consider the matrix

$$
A=\left(\begin{array}{ccc}
2 & 4 & 5 \\
2 & 6 & 10 \\
3 & 7 & 11 \\
0 & 8 & 12
\end{array}\right)
$$

a) Find a collection of vectors \mathbf{w}_{k} such that $A \mathbf{x}=\mathbf{b}$ has a solution if and only if $\mathbf{w}_{k} \cdot \mathbf{b}=0$ for each k.
b) Determine if $A \mathbf{x}=(5,4,6,4)$ has a solution. You do not need to find the solution, if it exists.
2. Find a basis for the orthogonal complement of the plane in \mathbb{R}^{4} spanned by $(4,6,7,8)$ and $(5,10,11,12)$.
3. For a square matrix, explain why its null space and its left null space have the same dimension. Then answer the following: is it possible that a square matrix A has an inverse but A^{T} does not?
4. Suppose \mathbf{v} is a non-zero vector in \mathbb{R}^{4} and let $A=\mathbf{v v}^{T}$. The questions below concern an arbitrary choice of \mathbf{v}. Still, to get a picture of what is going on, you might find it helpful to pick a random vector \mathbf{v} in \mathbb{R}^{4} and examine the properties of that particular $A=\mathbf{v} \mathbf{v}^{T}$. Nevertheless, your answers need to work in general, not just for one choice of \mathbf{v}.

- Compute the dimension of the column space of A. You should explain your answer in terms of the column perspective of matrix multiplication.
- Compute the dimension of the null space of A.
- Explain why the left null space equals the null space for this matrix.
- True or false: $A \mathbf{x}=\mathbf{0}$ if and only if \mathbf{x} is perpendicular to \mathbf{v}.
- Does the column space equal the row space for this matrix?
- Find a condition on \mathbf{v} that ensures $A^{2}=A$.

5.
